Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Združevanje slik na podlagi nenatančnih mask
ID
Črne, Ema
(
Author
),
ID
Čehovin Zajc, Luka
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(25,28 MB)
MD5: CA92A236B6A8BFAB793532EE119E8BB1
Image galllery
Abstract
Pri združevanju slik se večina pristopov osredotoča na izboljšanje mask, ki ločujejo ospredje od ozadja. Kot alternativo zahtevni in počasni metodi finega izboljševanja mask smo si v nalogi zastavili cilj doseči podobne rezultate samo z uporabo približnih mask in globokega učenja. Približne maske za učenje modela smo izpeljali iz podanih natančnih mask, ki smo jih sami deformirali. V okviru naloge smo preučili vplive različnih parametrov in za končni model izbrali tiste, ki so se izkazali za najuspešnejše. Končni model smo nato preizkusili tudi z raznovrstnimi maskami pridobljenimi z drugimi metodam za določanje mask. Model kljub svoji majhnosti in enostavnosti prikaže obetavne rezultate.
Language:
Slovenian
Keywords:
združevanje slik
,
konvolucijske nevronske mreže
,
globoko učenje
,
samokodirniki
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:
2023
PID:
20.500.12556/RUL-150185
COBISS.SI-ID:
168447747
Publication date in RUL:
14.09.2023
Views:
912
Downloads:
111
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ČRNE, Ema, 2023,
Združevanje slik na podlagi nenatančnih mask
[online]. Bachelor’s thesis. [Accessed 18 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=150185
Copy citation
Share:
Secondary language
Language:
English
Title:
Image compositing with non-accurate masks
Abstract:
In the field of image compositing most approaches focus on improving the precision of masks that distinguish between foreground and background. As an alternative to computationally intensive and time consuming image matting method, this research aims at achieving similar outcomes using only imprecise masks and the process of deep learning. These imprecise masks were created by deforming given exact masks. The work investigates the impact of different parameters and uses the combination of the most effective ones for the final model. The final model was then tested with a variety of masks obtained from other unrelated methods for foreground mask extraction. Despite its small size and simplicity, the model demonstrates promising results.
Keywords:
image compositing
,
convolutional neural networks
,
deep learning
,
autoencoders
Similar documents
Similar works from RUL:
Segmentacija fibroze srca s pomočjo konvolucijskih avtokodirnikov
Konvolucijske nevronske mreže DAU z reduciranimi prostostnimi stopnjami
Izboljšava klasifikacije mamogramov z generiranjem umetnih podatkov in prenosom učenja
Abstrakcija oblik celičnih predelkov s pomočjo globokega učenja
Detekcija dronov na vgrajeni napravi v realnem času
Similar works from other Slovenian collections:
No similar works found
Back