izpis_h1_title_alt

Problem realizacije grafov, različice in algoritmi
ID SIMOVSKA, LJUBICA (Author), ID Čibej, Uroš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (664,75 KB)
MD5: 7BDE96BBF0B0E3D99BEE8F9119E52DCE

Abstract
Pri delu z grafi pogosto potrebujemo predstavitev grafa iz danega zaporedja stopenj, bodisi za ustvarjanje vzorčnih modelov pri analizi omrežij ali za iskanje izomerov iste molekulske formule. Zanima nas, ali za dano zaporedje pozitivnih celih števil obstaja graf s tem zaporedjem stopenj. Če tak graf obstaja, si želimo ustvariti eno takšno realizacijo. Vendar pa v resničnem svetu ni vedno potrebna katerakoli realizacija grafa. Pogosto postavimo različne omejitve na graf, zato se problem omeji na povezane grafe, drevesa, dvodelne grafe in usmerjene grafe. Za reševanje problema naštevanja uporabimo izčrpno metodo in predstavimo naše rezultate za naštevanje vseh realizacij za dano zaporedje stopenj, ob upoštevanju različnih omejitev grafov.

Language:Slovenian
Keywords:realizacija grafa, zaporedje stopenj, problem naštevanja
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-150175 This link opens in a new window
COBISS.SI-ID:168446467 This link opens in a new window
Publication date in RUL:14.09.2023
Views:1007
Downloads:71
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Graph realization problem, variations and algorithms
Abstract:
Many times when working with graphs, we need a graph representation from a given degree sequence. Whether that is for generating a sample network for world models or to find the different structural isomers of the same molecular formula. For a given sequence of positive integers, we would like to know if a graph with that degree sequence exists, if so we want to construct a realization. But in the real world, we are not always interested in any such graph realization. Many times we require different restrictions on the graph. We thus limit the problem to connected graphs, trees, bipartite graphs and directed graphs. With an exhaustive method we then tackle the enumeration problem. We present our results for the enumeration of all realizations for a given degree sequence, with the different graph restrictions in mind.

Keywords:graph realization, degree sequence, enumeration problem

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back