izpis_h1_title_alt

Vodenje globine anestezije in modeliranje učinka anestetika
ID VEGELJ, ALEKSANDER (Author), ID Karer, Gorazd (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (19,70 MB)
MD5: C664B083A73D38FBC0C3FBB6186B613A

Abstract
Splošna anestezija, pri kateri se hipnotik, analgetik in mišični relaksant vnaša v pacientovo telo intravensko, se imenuje popolna intravenska anestezija (angl. total intravenous anaesthesia – TIVA). Za pomoč pri presoji globine anestezije so se v klinični praksi uveljavili monitorji bispektralnega indeksa (BIS). Vrednosti indeksa BIS so izračunane iz časovne in frekvenčne analize elektroencefalograma (EEG). Dotok hipnotika, kot je propofol, primerno zniža vrednosti indeksa BIS, vendar to ni edini dejavnik, ki vpliva na vrednosti indeksa BIS. Gibanje obraznih mišič, prisotnost mišičnih relaksantov v telesu, razna patološka stanja in bolečinski dražljaji med kirurškim posegom lahko vplivajo na vrednosti indeksa BIS. Poleg tega je signal indeksa BIS, ki se izračunava med kirurškim posegom, podvržen šumu in ima lahko spremenljiv mrtvi čas. V klinični praksi so uveljavljene infuzijske črpalke (angl. infusion pump) s ciljno krmiljeno infuzijo (angl. target controlled infusion – TCI) za računalniško krmiljenje globine anestezije. Infuzijske črpalke TCI delujejo na osnovi linearnega dinamičnega modela za potek koncentracij zdravila v telesu. Ti modeli so pogosto 3 prostorni modeli z virtualnim prostorom biofaze, v katerem je povezava med koncentracijo zdravila in učinkom zdravila. Za propofol obstajajo nelinearne statične preslikave, ki preslikajo koncentracijo propofola v biofazi v vrednost indeksa BIS. Za razbremenitev anesteziologa so se razvile tudi različne metode zaprtozančnega vodenja globine anestezije, ki regulirajo vrednosti indeksa BIS s prilagajanjem hitrosti infuzije propofola, a se v klinični praksi še niso uveljavile. V magistrskem delu smo predstavili dve različici nove zaprtozančne metode vodenja globine anestezije. Nova metoda uporablja infuzijsko črpalko TCI v krmilnem delu. Zaradi razlike med nominalnim modelom pacienta v infuzijski črpalki TCI in dinamiko dejanskega pacienta, še vedno ostane pogrešek med referenco in meritvami indeksa BIS. To odpravimo z regulatorjem: prva različica v regulirnem delu uporablja PI regulator, druga pa prediktivno vodenje (angl. model predictive control – MPC). Za implementacijo infuzijske črpalke TCI smo podrobno opisali algoritem STANPUMP in strukturo modelov pacienta za propofol, ki jih uporabljajo infuzijske črpalke v klinični praksi. Obe različici nove metode vodenja smo primerjali simulacijsko v okolju Matlab Simulink med seboj in proti najpogostejši in preprosti metodi vodenja s PI regulatorjem. Testirali smo kvaliteto vodenja v primeru, ko je odstopanje med nominalnim modelom pacienta in dinamiko dejanske pacienta, ko je prisoten šum na izhodu, ko je upoštevan mrtvi čas na izhodu in ko so prisotne motnje na izhodu zaradi bolečinskih dražljajev. Ugotovili smo, lahko dobimo boljše rezultate od klasičnega pristopa, ki se uporablja v klinični praksi, še posebej pri uporabi prediktivnega vodenja v regulirnem delu. Obe različici zmoreta kompenzirati motnje zaradi bolečinskih dražljajev. Ugotovili smo, da je smiselno eksplicitno kompenzirati šum in mrtvi čas. Če ju ne kompenziramo, dobimo velike in hitre spremembe hitrosti infuzije propofola ter oscilatorni odziv indeksa BIS, oba pojava pa poslabšata kvaliteto vodenja. Za namen boljše napovedi odziva indeksa BIS v prediktivnem vodenju, smo identificirali nelinearni residualni model pacienta. Uporabili smo nevro mehki model Takagi Sugeno s posplošenim pogreškom in nelinearno nevronsko mrežo s posplošenim pogreškom, ki smo jih testirali na podatkih in na simulacijskem primeru. Identificirana nelinearna residualna modela sta izboljšala napoved indeksa BIS nominalnega modela. Na simuliranem primeru, se je pokazalo, da je Schniderjev model pacienta togi sistem, klasični pristopi s posplošenim pogreškom pa togih sistemov ne uspejo dobro identificirati. Rezultati na simulacijskem primeru še vedno nakazujejo, da je mogoče uporabljene metode identifikacije residualnega modela izboljšati z uporabo bolj naprednih metod identifikacije. V prihodnje bomo zato raziskali uporabo različnih metod za sprotno identifikacijo togih sistemov, za identifikacijo residualnega modela pacienta. Poleg tega se bomo posvetili tudi razvoju novih naprednih metod za implementacijo opazovalnikov za nelinearne sisteme. To bo omogočilo še dodatno izboljšanje napovedi v prediktivnem vodenju.

Language:Slovenian
Keywords:infuzijska črpalka, ciljno krmiljena infuzija (TCI), bisprektralni indeks (BIS), propofol, zaprtozančno vodenje, prediktivno vodenje, identifikacija, globina anestezije, globina hipnoze
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2023
PID:20.500.12556/RUL-150168 This link opens in a new window
COBISS.SI-ID:165262851 This link opens in a new window
Publication date in RUL:14.09.2023
Views:639
Downloads:77
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Depth-of-anesthesia control and modelling the effect of anesthetic agent
Abstract:
General anaesthesia, in which a hypnotic, analgesic and muscle relaxant are administered into the patient intravenously, is called total intravenous anaesthesia (TIVA). To help in assessing the depth of anaesthesia, bispectral index (BIS) monitors have become established in clinical practice. BIS index is calculated from an analysis of electroencephalographic (EEG) signals in the time and frequency domain. The infusion of a hypnotic such as propofol reduces BIS index values appropriately but is not the only factor that affects BIS index values. The movement of facial muscles, the presence of muscle relaxants in the body, various pathological conditions and noxious stimuli during surgery can impact the values of the BIS index. In addition, BIS index calculated during surgery is subject to noise and may have a variable time delay (i.e., dead time). In clinical practice, infusion pumps with target-controlled infusion (TCI) are established for computer control of the depth of anaesthesia. TCI infusion pumps work on the basis of a linear dynamic model that model the course of drug concentration in the body. These models are often 3-compartment models with a virtual effect site compartment (i.e., biophase) in which the drug concentration correlates with the drug effect. For propofol, there are non-linear static functions that map propofol concentration in the biophase a BIS index value. In order to relieve the anaesthesiologist, various methods of closed-loop control of the depth of anaesthesia have been developed, which regulate BIS index values by adjusting the rate of propofol infusion, but they have not yet been established in clinical practice. In the master's thesis, we presented two versions of a new closed-loop method of controlling the depth of anaesthesia. The new method uses a TCI infusion pump as feedforward control. Due to the difference between the nominal patient model used in the TCI infusion pump and the dynamics of the actual patient, there remains an error between the reference and the BIS index measurements. We eliminate this with a regulator. The first version uses a PI controller and the second uses model predictive control (MPC). To implement the TCI infusion pump, we detailed the STANPUMP algorithm and the structure of the propofol patient models used by the TCI infusion pump in clinical practice. Both versions of the new control method were compared by simulation in the MATLAB Simulink environment with each other and against the most common and simple control method the PI controller. We tested the quality of control in the case where we consider the deviation between the nominal patient model and the dynamics of the actual patient, when there is noise at the output, when the dead time at the output is considered, and when there are disturbances at the output due to noxious stimuli. We found that we can get better results than the classical approach used in clinical practice, especially when using MPC. Both versions are able to reject disturbances from noxious stimuli. We found that it makes sense to explicitly compensate for noise and dead time. If they are not compensated, we get large and rapid changes in the rate of propofol infusion and an oscillatory response of the BIS index, both of which are detrimental to the quality of control. In order to better predict the response of the BIS index in MPC, a non linear residual model of the patient was identified. A neuro-fuzzy Takagi Sugeno model and a non linear autoregressive neural network with exogenous inputs were used, which we tested on real data collected during surgery and on a simulated example. The two identified non linear residual models improved the prediction of the BIS index of the nominal patient model. In the case of the simulated example, it was shown that Schnider's patient model is a stiff system and autoregressive models with exogenous input fail to identify stiff systems well. The results of the simulation case still indicate that the used residual model identification methods can be improved by using more advanced identification methods. In the future, we will therefore investigate the use of various methods for the on line identification of stiff systems, for the identification of the patient's residual model. This will allow further improvement of predictions in MPC. In addition, we will also focus on the development of new advanced methods for the implementation of observers for nonlinear systems.

Keywords:infusion pump, target-controlled infusion (TCI), bisprectral index (BIS), propofol, closed-loop control, model predictive control (MPC), system identification, depth of anaesthesia (DoA), depth of hypnosis (DoH)

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back