izpis_h1_title_alt

Uporaba modelov strojnega učenja v vgrajenih sistemih
ID Kuchler, Bernard (Author), ID Rozman, Robert (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (6,59 MB)
MD5: C77DB1740BA4C047F020BE51ED1637F7

Abstract
Cilj diplomske naloge je izkoristiti prednosti splošnih okolij za učinkovito tvorbo modelov strojnega učenja (Orange) in te modele ustrezno prilagoditi za izvedbo v vgrajenih sistemih. Slednji namreč imajo omejene vire in prilagoditev modelov pogosto ni enostavno opravilo. Splošna orodja te prilagoditve modelov običajno ne podpirajo, obstajajo pa namenska orodja proizvajalcev vgrajenih sistemov za tvorbo prilagojenih modelov, ki pa so precej bolj omejena glede funkcionalnosti in izbire modelov. V tej nalogi smo zato poskušali izkoristiti prednosti obeh vrst razvojnih okolij. Modele smo tvorili v splošnem orodju Orange in jih nato s pomočjo različnih pristopov in namenskih orodij prilagajali za učinkovito uporabo v vgrajenih sistemih. Pri tem smo napisali več različnih dodatnih programov v programskih jezikih Python in C. Prispevek našega dela so poleg programov še splošna priporočila za uporabo modelov v vgrajenih sistemih in podrobno opisani postopki za enostavno izdelavo modelov strojnega učenja v okolju Orange in njihovo učinkovito prilagoditev za uporabo v vgrajenih sistemih. Na tej osnovi lahko odločitve in postopke izvedejo tudi uporabniki z manj izkušnjami na področju strojnega učenja. Omenjene postopke smo preizkusili na dveh praktičnih primerih klasifikacije in razpoznave ter analizirali učinkovitost in uspešnost modelov v vseh korakih od splošnega okolja do uporabe na vgrajenih sistemih. Ugotovili smo, da so modeli primerljivo uspešni tudi pri uporabi na bolj omejenih vgrajenih sistemih. Vse izdelano v okviru diplomske naloge je javno dostopno v repozitoriju GitHub [11] in na voljo za nadaljnje izboljšave.

Language:Slovenian
Keywords:Orange Data Mining, SensorTile.box, nadzorovano strojno učenje, vgrajeni sistemi, programski jezik Python, programski jezik C
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-150167 This link opens in a new window
COBISS.SI-ID:168288003 This link opens in a new window
Publication date in RUL:14.09.2023
Views:524
Downloads:136
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Application of Machine Learning Models in Embedded Systems
Abstract:
The goal of this work is to take advantage of general environments (e.g., Orange) to efficiently build machine learning models, and adapt them for implementation in embedded systems. The reason is that the latter have limited resources and adaptation of models is often not a simple task. General environments usually do not support this adaptation of models. However, there are dedicated tools from embedded systems vendors to create customized models, but these tools are much more limited in terms of functionality and choice of models. Therefore, we tried to take advantage of both types of development environments. The models were created with the general tool Orange and then adapted for effective use in embedded systems with different approaches using the dedicated tools mentioned above. In the process, we wrote several different programs in Python and C. The contribution of our work are program codes and sequences of steps that facilitate the creation of machine learning models in the Orange environment, and their efficient adaptation for use in embedded systems. In this way, the procedures can be performed by users with less experience in machine learning. We tested these procedures on two practical examples for classification and recognition, and analyzed the effectiveness and accuracy of the models in all steps from the general environment to their application on embedded systems. Our tests have shown that the models perform comparably well when applied to more limited embedded systems. All the work done in this thesis is publicly available on the GitHub repository [11], which is available for further extensions.

Keywords:Orange Data Mining, SensorTile.box, supervised machine learning, embedded systems, Python programming language, C programming language

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back