izpis_h1_title_alt

Preseki polinomskih grafov : delo diplomskega seminarja
ID Luetić, Ana (Author), ID Drinovec Drnovšek, Barbara (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (10,17 MB)
MD5: 2DBA7167AB663352E3E075B11468623D

Abstract
Ko opazujemo $n$ različnih polinomskih grafov v evklidski ravnini, ki se sekajo v neki točki, lahko iz njihove urejenosti levo in desno od presečišča zapišemo permutacijo množice $\{1,...,n\}$. Permutacijam, ki jih na ta način lahko dobimo, rečemo izmenjave. Dokažemo, da je množica $a(n)$ vseh izmenjav $n$ elementov manjša od množice $S(n)$ vseh permutacij $n$ elementov. Še več, natančno karakteriziramo, katere permutacije so izmenjave. Pri tem si pomagamo z drevesi, saj poiščemo takšno podmnožico dreves, obrezana drevesa, da vsaka izmenjava enolično določa obrezano drevo ter da vsako obrezano drevo določa neka izmenjava. Torej poiščemo bijekcijo med množico izmenjav ter množico obrezanih dreves. Na koncu si ogledamo še par lastnosti zaporedja $a(n)$.

Language:Slovenian
Keywords:polinom, permutacija, izmenjava, obrezano drevo
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-150133 This link opens in a new window
UDC:519.1
COBISS.SI-ID:164643587 This link opens in a new window
Publication date in RUL:14.09.2023
Views:693
Downloads:45
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Intersections of polynomial graphs
Abstract:
If we consider $n$ different polynomials in the Euclidean plane that intersect at some point, we can describe a permutation of the set $\{1,...,n\}$ by observing the values of the polynomials at the points to the left and right of the intersection. The permutations we get in this way are called interchanges. We prove that the set $a(n)$ of all interchanges of $n$ polynomials is smaller than the set $S(n)$ of all permutations of $n$ elements. Furthermore, we clarify exactly which permutations are interchanges. To do this, we use pruned trees, a subset of trees with the property that each interchange defines a unique pruned tree and each pruned tree is defined by some interchange. Therefore, we find a bijective function between the set of interchanges and the set of pruned trees. Finally, we observe some of the characteristics of the sequence $a(n)$.

Keywords:polynomial, permutation, interchange, pruned tree

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back