izpis_h1_title_alt

Pregled metod za napovedovanje rastlinskih miRNA in njihovih tarč
ID Hertiš, Tina (Author), ID Jakše, Jernej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,51 MB)
MD5: 9AD77482CA6B95AC955181CA65C47F22

Abstract
Diplomsko delo se začne s podrobnim uvodom v svet mikroRNA (miRNA), pri čemer se osredotoča na njihovo zgodovinsko odkritje leta 1993 in na napredek, ki je bil dosežen v razumevanju njihovih biogenetskih mehanizmov v naslednjih treh desetletjih. Delo nato preide na različne pristope k napovedovanju miRNA: najprej se osredotoča na same miRNA, nato pa na njihove specifične tarče. V tem kontekstu se metode napovedovanja lahko klasificirajo v dve glavni kategoriji. Prva kategorija zajema metode, ki temeljijo na pravilih (ab inito metode), temelječih na znanem biološkem vedenju o različnih lastnostih miRNA. Druga kategorija vključuje metode, ki se zanašajo na moč strojnega učenja. Ta zajema tudi najnovejši pristop k napovedovanju, ki vključuje uporabo globokih nevronskih mrež za bolj natančno in učinkovito napovedovanje. Uspešnost napovedovanja se razlikuje med posameznimi metodami. Kljub temu je za doseganje popolne legitimnosti in zanesljivost napovedi ključnega pomena, da se napovedane miRNA eksperimentalno preverijo in potrdijo.

Language:Slovenian
Keywords:miRNA, ab initio metode, strojno učenje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:BF - Biotechnical Faculty
Year:2023
PID:20.500.12556/RUL-149990 This link opens in a new window
COBISS.SI-ID:164581635 This link opens in a new window
Publication date in RUL:13.09.2023
Views:520
Downloads:74
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Prediction of plant miRNAs and their targets
Abstract:
The thesis begins with a detailed introduction to the world of microRNAs (miRNA), focusing on their historic discovery in 1993 and the progress made in understanding their biogenesis mechanisms over the next three decades. The work then transitions to various prediction approaches: it first centres on miRNA themselves, and then on their specific targets. Within this context, prediction methods can be classified into two main categories. The first category encompasses on rule-based methods (ab inito methods) grounded in current knowledge about miRNAs. The second category includes methods that rely on the power of machine learning. This also encompasses the latest approach to prediction, which involves the use of deep neural networks for more precise and effective forecasting. The prediction accuracy varies among individual methods. Nevertheless, for achieving full legitimacy and reliability of predictions, it is of paramount importance that these defined miRNAs are experimentally verified and validated.

Keywords:miRNA, ab initio methods, machine learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back