V tem delu naslovimo problem štetja in detekcije objektov poljubnih kategorij z malo učnimi primeri. Naloga metode je prešteti vse instance objektov, ki so sicer del iste semantične kategorije kot podani primeri, ampak so si vizualno lahko zelo raznoliki. Obstoječe metode omenjeni problem naslovijo z močno generalizacijo izgleda podanih nekaj učnih primerov, kar jim omogoča uspešno štetje. Sposobnost generalizacije sodobnih metod vodi v visoke vrednosti priklica, in znižano natančnost zaradi nediskriminativnega štetja. Poleg tega so metode štetja z malo primeri globalni števci, ki ne zagotavljajo lokacij objektov, kar je ključno pri mnogih aplikacijah. Predlagamo novo metodo DAVE (ang. Detect and Verify), ki poveže obstoječo vrzel med tradicionalnimi metodami za štetje z malo primeri in nastajajočim področjem štetja in zaznavanja z malo primeri, saj omogoča napoved natančnega števila objektov in njihove lokacije. DAVE uspešno uvede paradigmo zaznaj in preveri, ki omogoča doseganje visokih vrednosti priklica in natančnosti. DAVE dosega nižjo napako kot sodobne metode pri nalogi štetja s relativnim izboljšanjem 20% MAE, in pri nalogi zaznavanja za 20% AP50. DAVE doseže manjšo napako RMSE kot sodobni števci, in dosega primerljive detekcijske rezultate v AP50, kot metode, ki na vhod prejmejo primerke.
|