izpis_h1_title_alt

A Method for Low-shot Object Counting and Detection
ID Pelhan, Jer (Author), ID Kristan, Matej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (44,57 MB)
MD5: 4248C26802F9396EF2966B6A87D69FDF

Abstract
We tackle the problem of few-shot object counting and detection of arbitrary object categories using only a small number of annotated instances, namely exemplars. The task of the method is to count and detect all objects that are part of the same semantic category as the exemplars but may vary widely in visual appearance. Methods currently address this problem by generalizing the appearance of the exemplar objects, allowing them to count effectively. The generalization capacity leads to high recall, but also to low precision, due to non-discriminative counting. Few-shot counting methods predict solely the total count of objects and do not provide estimations of their locations, which is crucial with many applications. We propose a novel method DAVE (Detect and Verify), which aims to bridge the gap between traditional few-shot counting methods and the emerging field of few-shot counting and detection, by predicting accurate count and locations of objects. We introduce a detect-and-verify paradigm into few-shot counting, achieving both high recall and precision rates. DAVE outperforms the most recent detection counter by 20% in terms of AP50 and decreases the counting error of the top-performing counter by 20% in terms of MAE. DAVE further outperforms all 0-shot counters in terms of RMSE, and achieves on-par AP50 performance as the best few-shot counting and detection method.

Language:English
Keywords:computer vision, object counting, object detection, few-shot learning
Work type:Master's thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-149978 This link opens in a new window
COBISS.SI-ID:165352707 This link opens in a new window
Publication date in RUL:12.09.2023
Views:849
Downloads:278
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Metoda za štetje in detekcijo objektov z malo učnimi primeri
Abstract:
V tem delu naslovimo problem štetja in detekcije objektov poljubnih kategorij z malo učnimi primeri. Naloga metode je prešteti vse instance objektov, ki so sicer del iste semantične kategorije kot podani primeri, ampak so si vizualno lahko zelo raznoliki. Obstoječe metode omenjeni problem naslovijo z močno generalizacijo izgleda podanih nekaj učnih primerov, kar jim omogoča uspešno štetje. Sposobnost generalizacije sodobnih metod vodi v visoke vrednosti priklica, in znižano natančnost zaradi nediskriminativnega štetja. Poleg tega so metode štetja z malo primeri globalni števci, ki ne zagotavljajo lokacij objektov, kar je ključno pri mnogih aplikacijah. Predlagamo novo metodo DAVE (ang. Detect and Verify), ki poveže obstoječo vrzel med tradicionalnimi metodami za štetje z malo primeri in nastajajočim področjem štetja in zaznavanja z malo primeri, saj omogoča napoved natančnega števila objektov in njihove lokacije. DAVE uspešno uvede paradigmo zaznaj in preveri, ki omogoča doseganje visokih vrednosti priklica in natančnosti. DAVE dosega nižjo napako kot sodobne metode pri nalogi štetja s relativnim izboljšanjem 20% MAE, in pri nalogi zaznavanja za 20% AP50. DAVE doseže manjšo napako RMSE kot sodobni števci, in dosega primerljive detekcijske rezultate v AP50, kot metode, ki na vhod prejmejo primerke.

Keywords:računalniški vid, štetje objektov, detekcija objektov, učenje z malo učnimi primeri

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back