izpis_h1_title_alt

Računalniško podprto določanje oslonilnih točk srčne zaklopke v tridimenzionalnih računalniško tomografskih slikah srca na podlagi globokega učenja
ID Škrlj, Luka (Author), ID Vrtovec, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (6,81 MB)
MD5: 4E1D7E8034B52B9134144081366ECCE2

Abstract
Diagnoza in ocena morfologije aortne zaklopke imata kljuˇcno vlogo pri ocenjevanju zdravja srca in ožilja. V magistrskem delu se ukvarjamo z vrednotenjem računalniško podprtih metod za določanje oslonilnih točk na aortni zaklopki v medicinskih slikah srca z uporabo tehnik strojnega učenja. Uporabili smo metodi nevronske mreže prostorske razporeditve (angl. spatial configuration network, SCN) in komunikacijskega večagentnega spodbujevanega učenja (angl. communicative multi-agent reinforcement learning, C-MARL). V raziskavi je uporabljen nabor podatkov, ki vsebuje 120 slik srca zdravih oseb in 40 slik srca bolnih oseb, ki so bile pridobljene s slikovno tehniko računalniške tomografije (angl. computed tomography). Raziskava obravnava potrebo po robustni pred-obdelavi slik in uvaja tehniko obrezovanja slik na območje zanimanja, ki temelji na registraciji atlasa, z namenom izboljšanja natančnosti določanja oslonilnih točk. Rezultati potrjujejo učinkovitost metod SCN in C-MARL. Če primerjamo rezultate določanja oslonilnih točk, je metoda SCN za slike zdravih oseb dosegla povprečno evklidsko razdaljo med avtomatsko določenimi in referenčnimi poločaji oslonilnih točk 1,14 ± 0,78 mm, metoda C-MARL pa 1,42 ± 0,82 mm. Pri slikah bolnih oseb je metoda SCN dosegla 3,43 ± 6,00 mm, medtem ko je metoda C-MARL dosegla 2,66 ± 3,99 mm. Rezultati imajo odločilen pomen za klinično prakso, saj povečujejo natančnost pri ocenjevanju morfologije aortne zaklopke. Vključitev metode SCN v spletno aplikacijo predstavlja praktično uporabnost raziskave. Ta inovacija omogoča zdravstvenim delavcem, da z uporabniku prijaznim vmesnikom izkoristijo moč razpoznavanja oslonilnih točk za analizo medicinskih slik, kar omogoča hitrejše in bolj informirane odločitve.

Language:Slovenian
Keywords:analiza medicinskih slik, razpoznavanje oslonilnih točk, globoko učenje, konvolucijske nevronske mreže, spodbujevano učenje, aortna zaklopka, morfometrija, računalniška tomografija.
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2023
PID:20.500.12556/RUL-149856 This link opens in a new window
COBISS.SI-ID:165355779 This link opens in a new window
Publication date in RUL:11.09.2023
Views:982
Downloads:152
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Computer-assisted determination of aortic valve landmarks in three-dimensional computed tomography images based on deep learning
Abstract:
Aortic valve diagnosis and morphology assessment play pivotal roles in cardiovascular health evaluation. This master’s thesis delves into the evaluation of computer-assisted methods for aortic valve landmark detection in medical im- ages of the heart by harnessing machine learning techniques, specifically the spatial configuration network (SCN) and communicative multi-agent reinforcement learning (C-MARL) methods. The research leverages a dataset comprising 120 images of healthy and 40 images of pathological subjects, acquired with the computed tomography imaging technique. Addressing the need for robust preprocessing, the study introduces atlas registration-based cropping techniques to the region of interest in order to enhance landmark detection precision. The obtained results underscore the efficency of the SCN and C-MARL methods. When comparing landmark detection outcomes, SCN achieved a mean Euclidean distance between the detected and reference landmark locations of 1.14 ± 0.78 mm for healthy subjects, while C-MARL demonstrated 1.42 ± 0.82 mm. For pathological subjects, SCN yielded 3.43 ± 6.00 mm and C-MARL achieved 2.66 ± 3.99 mm. These findings indicate method-specific strengths across different subject categories. The results hold critical implications for clinical practice, enhancing accu- racy in aortic valve diagnosis and morphology assessment. Furthermore, the integration of the SCN method into a web-based application showcases the practical applicability of the research. This innovation empowers healthcare professionals across diverse domains with a user-friendly interface to leverage the power of landmark localization for medical image analysis, underscoring the tangible impact of cutting-edge research on real-world medical practices.

Keywords:medical image analysis, landmark detection, deep learning, convolutional neural networks, reinforcement learning, aortic valve, morphometry, computed tomography.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back