izpis_h1_title_alt

Deformacijska teorija toričnih raznoterosti : magistrsko delo
ID Markun, Jure (Author), ID Zalar, Aljaž (Mentor) More about this mentor... This link opens in a new window, ID Filip, Matej (Comentor)

.pdfPDF - Presentation file, Download (2,13 MB)
MD5: A639D0B0FFA0D1DCC91B4EA6A5A13FBF

Abstract
V magistrskem delu obravnavamo afine torične raznoterosti v kompleksnem afinem prostoru kot množico posebnih afinih algebraičnih raznoterosti. Te so za razliko od splošnih določene s kombinatoričnimi podatki in imajo posledično lepše lastnosti. Opišemo njihove osnovne lastnosti in razložimo njihovo konstrukcijo iz poliedrskih stožcev realnega vektorskega prostora. Definiramo deformacijski prostor prvega reda $T^{1}_{X}$ in ga podrobno obravnavamo v posebnem primeru, ko so stožci afinih raznoterosti dobljeni iz vložitve mrežnega politopa na $n$--ti nivo (glede na zadnjo spremenljivko) prostora. V tem primeru imajo homogeni členi prostora $T^{1}_{X}$ pomembno geometrijsko interpretacijo. Predstavimo tudi razliko v obravnavi tega prostora ob vložitvi politopa na prvi ali kateri višji nivo, saj to vpliva na kompleksnost deformacijskega prostora prvega reda. Na koncu predstavimo še monoid $\tilde{T},$ ki je pomemben za nadaljnji študij deformacij toričnih raznoterosti.

Language:Slovenian
Keywords:afine torične raznoterosti, deformacijska teorija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-149757 This link opens in a new window
COBISS.SI-ID:163653123 This link opens in a new window
Publication date in RUL:09.09.2023
Views:593
Downloads:55
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Deformation theory of toric varieties
Abstract:
In this master thesis we study affine toric varieties in a complex space as a set of affine algebraic varieties, that can be defined using combinatorial data and are therefore to some extent easier to work with in comparison to general affine varieties. Their basic properties are established, as well as their construction from polyhedral cones of a real vector space. We introduce deformation space $T^{1}_{X},$ which is closely studied in a special case, when polyhedral cones are constructed from embedding of lattice polygon to $n$--th level (regarding the last parameter) of this space. In this case, homogenous components of space $T^{1}_{X}$ have an important geometric interpretation. We focus on a difference in research if a polygon is embedded on the first or on the higher level of a real space, as this strongly impacts the complexity of the deformation space itself. At the end, a monoid $\tilde{T}$ is described as a further important object of the deformation theory of affine toric varieties.

Keywords:affine toric varieties, deformation theory

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back