Enzymes are biocatalysts that enable the sustainable execution of numerous industrially significant reactions. In the reaction mixture, enzymes can be dissolved, or they can be immobilized. The advantages of immobilization include increased enzyme stability, extended operational lifetimes, enzyme reusability, and significant facilitation of separation processes after catalytic reactions. The implementation of enzyme immobilization also shows promise in the field of microbioreactors, which are miniaturized reactors in which biotransformations take place. Nanomaterials have proven to be excellent solid supports for enzyme immobilization in microbioreactors, primarily due to their large specific surface area and small size. A greater surface area accessible to enzymes results in a higher enzyme concentration in the reactor, potentially leading to more efficient biocatalytic processes. Important characteristics of nanomaterials as enzyme carriers include biological compatibility, non-toxicity and the potential for modification. In this work, I focus on magnetic nanoparticles, nanosprings, nanofibers, and metal-organic frameworks. I also discuss specific examples of using the listed nanomaterials, such as the deamination of 1-phenylalanine with enzyme-coated magnetic nanoparticles, immobilization of β-galactosidase on a silicon dioxide nanospring, immobilization of lipase on polylactic acid nanofibers, and immobilization of lipase on a metal-organic framework for warfarin production.
|