izpis_h1_title_alt

Karakterizacija vezave proteina hnRNP H1 na heksanukleotidne ponovitve GGGGCC
ID Gnidovec, Luka (Author), ID Župunski, Vera (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,24 MB)
MD5: C30A2B6EE6F7ED65D922FC567D1A2245

Abstract
Amiotrofična lateralna skleroza (ALS) je nevrodegenerativna bolezen, ki se kaže s postopno degeneracijo in izgubo motoričnih nevronov, kar vodi v progresivno mišično paralizo. Čeprav so pretekle raziskave razkrile številne genetske vzroke, molekularni mehanizmi bolezni ostajajo slabo raziskani. Ena najpogostejših kavzalnih mutacij v ALS je heksanukleotidna ekspanzija ponovitev GGGGCC (G4C2) v genu C9ORF72. Zaradi visoke vsebnosti gvaninov ima zaporedje sposobnost tvorbe raznolikih struktur, med drugim različnih tipov G-kvadrupleksov. Heksanukleotidna ekspanzija G4C2 bi lahko nevrodegeneracijo povzročila na različne načine. Spremenjene multivalentne interakcije heksanukleotidnih ponovitev z RNA-vezavnimi proteini bi lahko povzročile sekvestracijo le-teh v jedrne in citoplazemske granule, s čimer bi onemogočile njihovo fiziološko delovanje. Regulator izrezovanja intronov hnRNP H1 je eden izmed glavnih interaktorjev ponovitev G4C2. Najdemo ga tudi v jedrnih granulah, opaženih v s C9ORF72 povezanim ALS. Narava vezave hnRNP H1 na ponovitve G4C2 ni dobro razumljena. V okviru magistrskega dela smo želeli interakcijo raziskati s strukturnega vidika. Želeli smo ugotoviti, ali se hnRNP H1 preferenčno veže na linearno zaporedje ali na G-kvadruplekse. Poleg tega nas je zanimalo, če hnRNP H1 razvije G-kvadruplekse ob vezavi nanje. Z metodo kloniranja IVA smo pripravili vektorski konstrukt pMCSG7-hnRNPH1-MBP, ki smo ga uporabili za izražanje proteina v bakterijskih celicah. Protein smo nato izolirali z z uporabo nikljeve afinitetne kromatografije ter kromatografije z ločevanjem po velikosti. Po kromatografiji z ločevanjem po velikosti smo s proteazo TEV odcepili fuzijski partner MBP nato pa izvedli še heparinsko afinitetno kromatografijo, s čimer smo pridobili zadostno čist protein hnRNP H1 za nadaljnje interakcijske teste. Za določitev vezave proteina na zaporedje G4C2 v linearni obliki ali v obliki G-kvadrupleksov smo uporabili metodo termoforeze, ob tem pa izvedli še test dušenja fluorescence, s čimer smo preverili, če protein G-kvadrupleske ob vezavi razvije. Za ta namen smo uporabili DNA-oligonukleotid, ki je na 5'-koncu vseboval fluorofor Cy5, na 3'-koncu pa dušilec fluorescence BHQ2. Rezultati termoforeze in testa dušenja fluorescence kažejo na preferenčno vezavo hnRNP H1 na ponovitve G4C2 v linearni obliki. Vezave na G-kvadruplekse v teh testih nismo zaznali, kar je onemogočilo določitev sposobnosti hnRNP H1, da razvije njihovo strukturo. Za dodatno potrditev vezave smo uporabili test zamika elektroforezne mobilnosti, kjer smo uporabili s transkripcijo in vitro pripravljeno RNA z osmimi ponovitvami G4C2. Rezultati testa zamika elektroforezne mobilnosti namigujejo na tvorbo struktur z višjo molekulsko maso, kar bi lahko bila posledica fazne ločbe tekoče-tekoče.

Language:Slovenian
Keywords:hnRNP H1, GGGGCC, C9ORF72, G-kvadrupleksi, dušenje fluorescence, termoforeza, EMSA, fazna ločba tekoče-tekoče
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FKKT - Faculty of Chemistry and Chemical Technology
Year:2023
PID:20.500.12556/RUL-149731 This link opens in a new window
COBISS.SI-ID:170967811 This link opens in a new window
Publication date in RUL:08.09.2023
Views:1075
Downloads:126
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Characterization of hnRNP H1 binding to GGGGCC hexanucleotide repeats
Abstract:
ALS is a fatal neurodegenerative disease characterized by gradual degeneration and eventual loss of motor neurons, which results in progressive muscular paralysis. Even though previous research discovered multiple genetic mutations that contribute to the disease, the molecular mechanisms of ALS are still largely not understood. One of the most common causal mutations in ALS is a hexanucleotide repeat expansion (HRE) GGGGCC in the gene C9ORF72. Due to the high G content, this sequence repeats can form higher order structures, including multiple types of G-quadruplexes (GQs). There are many pathways through which HRE in C9ORF72 could initiate neurodegeneration. Aberrant multivalent interactions of RNA with RNA-binding proteins (RBPs) could cause sequestration of RBPs in nuclear and cytoplasmic foci, inhibiting their physiological function. Splicing regulator hnRNP H1 was identified as one of the main interactors of G4C2 nucleotide repeats. It was also found in the nuclear granules, which have been observed in C9ORF72 ALS. The nature of hnRNP H1 binding to G4C2 repeats remains ambiguous. In my master’s thesis, we wanted to determine the structural aspects of hnRNP H1 binding to G4C2 repeats. First, we aimed to show a preference in binding to either folded or unfolded GQs. Next, we were interested if hnRNP H1 possesses the ability to linearize folded GQs. With IVA cloning, we prepared a vector construct pMCSG7-hnRNPH1-MBP, which we then used for the protein expression in bacterial cells. We then purified the protein using His-trap and size exclusion chromatography. After size exclusion chromatography, we cleaved off the fusion partner MBP with TEV protease and then performed heparin chromatography. We obtained a pure protein which we could use for the following interaction assays. To determine whether the protein binds to the linear or GQ structure we used thermophoresis. Along with this we performed fluorescence quenching assay which would allow us to observe the protein’s ability to unfold GQs. For this, we used a ssDNA oligonucleotide which contained Cy5 on 5’ end of the sequence and BHQ2 on its 3’. The results of thermophoresis and fluorescence quenching assay imply a preferential binding to linear G4C2 repeats. In these two assays, we could not detect any binding to GQs, which prevented us from determining if hnRNP H1 possesses the ability to linearize these structures. To additionally confirm the binding of hnRNP H1 to G4C2 repeats, we performed electrophoretic mobility shift assays (EMSA). For this, we used 4× G4C2 RNA repeats, which we prepared with in vitro transcription. The results of EMSA implicate a formation of higher molecular weight structure, which could form through the mechanism of liquid-liquid phase separation.

Keywords:hnRNP H1, GGGGCC hexanucleotide repeats, C9ORF72, G-quadruplexes, fluorescence quenching, thermophoresis, EMSA, liquid-liquid phase separation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back