izpis_h1_title_alt

Variacija vzorčenja učnih primerov za učenje parametričnih modelov za poprocesiranje vremenskih napovedi
ID Pokorn, Matic (Author), ID Faganeli Pucer, Jana (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,26 MB)
MD5: 6824EA25B41398B80E950103665C5A18

Abstract
EMOS je priljubljen model strojnega učenja, ki se v meteorologiji uporablja za poprocesiranje vremenskih napovedi ansamblov. V diplomski nalogi model učimo na napovedih temperature zraka 11-članskega ansambla in raziščemo, kako spremembe v učnih podatkih vplivajo na učenje modela EMOS. Učne podatke spreminjamo z uvedbo pristopov drsečega in fiksnega okna in s spreminjanjem njunih dolžin, uporabimo pa tudi regularizacijo in dodamo podatke o klimatoloških razmerah. Napovedi modela ovrednotimo z metrikami CRPS, RMSE in MAE ter zaključimo, da z poprocesiranjem z najboljšo konfiguracijo modela EMOS dosežemo v povprečju za 23,97% boljše napovedi kot z uporabo neobdelanega ansambla.

Language:Slovenian
Keywords:ansambel, napovedovanje vremena, poprocesiranje, EMOS
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-149707 This link opens in a new window
COBISS.SI-ID:165621251 This link opens in a new window
Publication date in RUL:08.09.2023
Views:519
Downloads:56
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Variation of training samples for training parametric models for postprocessing weather forecasts
Abstract:
EMOS is a popular machine learning model used in meteorology for post-processing ensemble weather forecasts. In our work we use air temperature forecasts of an 11-member ensemble to train the EMOS model and investigate how variations in training data influence its performance. We manipulate training data by introducing sliding and fixed window approaches and by variating their length. We also use regularization and add climatological data. We evaluate the model performance using CRPS, RMSE and MAE metrics and conclude that the post-processing with the best EMOS model configuration is on average 23,97% better than the performance of the raw ensemble.

Keywords:ensemble, weather forecasting, post-processing, EMOS

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back