izpis_h1_title_alt

Uporaba predvidevanja akcij nasprotnika pri učenju inteligentnega agenta
ID ŠUTAR, MATIC (Author), ID Lebar Bajec, Iztok (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (589,61 KB)
MD5: 1D670AB09EA8E40DCD7C2A8680C9561E

Abstract
V diplomskem delu so predstavljeni glavni koncepti strojnega učenja s poudarkom na spodbujevanem učenju. Osredotoča se na probleme z okolji, v katerih nastopa več agentov. Taki problemi metodam spodbujevanega učenja prestavljajo dodatne izzive. Diplomsko delo raziskuje različne načine reševanja problemov z več agenti. Predstavlja obstoječe rešitve, ki uporabljajo predvidevanje akcij nasprotnika pri učenju inteligentnega agenta. V diplomskem delu je podrobneje predstavljena metoda DRON, ki je zasnovana na osnovi globokega q-učenja. Primerjana je z osnovno metodo globokega q-učenja na izbranem okolju. V delu je predstavljena in primerjana tudi razširitev metode raziskovanja, ki temelji na radovednosti, na okolje z več agenti. Okolje je bilo implementirano v igralnem pogonu Unreal Engine 5. Predstavljena metoda raziskovanja se na koncu ni izkazala za opazno uspešnejšo od osnovne metode raziskovanja. Po drugi strani je uporaba arhitekture DRON v kombinaciji z osnovno metodo globokega q-učenja kazala na potencialno izboljšanje osnovne metode. Za konkretnejše zaključke bi morali izvesti dodatne poskuse.

Language:Slovenian
Keywords:inteligentni agent, spodbujevano učenje, modeliranje nasprotnika, globoko q-učenje, raziskovanje okolja na podlagi radovednosti, unreal engine
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-149699 This link opens in a new window
COBISS.SI-ID:165939203 This link opens in a new window
Publication date in RUL:08.09.2023
Views:1114
Downloads:61
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Usage of opponent action prediction in reinforcement learning
Abstract:
The main concepts of machine learning are presented in the thesis with an emphasis on reinforcement learning. The latter area also covers problems with multi-agent environments. Such problems pose additional challenges to the methods of reinforcement learning. The thesis explores various ways to solve multi-agent problems, using prediction of adversary actions in intelligent agent learning. In the diploma work, the DRON method, which is designed on the basis of deep q-learning, is presented in more detail. It is compared with the basic method of deep q-learning on the selected environment. The work also presents and compares the extension of curiosity-driven exploration methods to a multi-agent environment. The environment was implemented in the game engine Unreal Engine 5. In the end, the presented exploration method did not prove to be noticeably more successful than the basic exploration method. On the other hand, the use of the DRON architecture in combination with the basic deep q-learning method indicated a potential improvement of the basic method. For more concrete conclusions, additional experiments should be carried out.

Keywords:intelligent agent, reinforcement learning, opponent modeling, deep q-learning, curiosity-driven exploration, unreal engine

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back