izpis_h1_title_alt

Ocena matematične anksioznosti na podlagi vizualnih signalov
ID Kovač, Matej (Author), ID Košir, Andrej (Mentor) More about this mentor... This link opens in a new window, ID Jankovec, Marko (Comentor)

.pdfPDF - Presentation file, Download (5,16 MB)
MD5: 97255796BF55E140625FFB774985BA2C

Abstract
V diplomski nalogi obravnavamo vprašanje do kolikšne mere lahko ocenimo matematično anksioznost na podlagi vizualnih signalov. Poleg opisa krmiljenja kamere za zaznavo skeletnih točk, delo vključuje obdelavo in analizo podatkov, s pomočjo različnih metod strojnega učenja. Zasnova za izvedbo eksperimenta in razpoznave matematične anksioznosti izhaja iz raziskovalnega projekta z naslovom »Spremljanje in izboljšanje individualnih obravnav učencev v COVID in post-COVID razmerah«, ki si prizadeva pomagati osnovnošolskim učencem premagovati anksioznost ob reševanju matematičnih problemov. Pri obdelavi podatkov smo se posluževali različnih razvrščevalnikov strojnega učenja in za izbrane značilke ovrednotili uspešnost posameznih razvrščevalnikov. V našem primeru se je najbolje izkazala metodo podpornih vektorjev. Kljub temu se rezultati uspešnosti razvrščevalnikov niso izkazali za dovolj dobre, da bi zanesljivostjo prepoznavali matematično anksioznost le na podlagi vizualnih signalov.

Language:Slovenian
Keywords:matematična anksioznost, strojno učenje, kamera za globinsko zaznavo
Work type:Bachelor thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2023
PID:20.500.12556/RUL-149588 This link opens in a new window
COBISS.SI-ID:164186115 This link opens in a new window
Publication date in RUL:07.09.2023
Views:639
Downloads:79
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Assessment of mathematics anxiety based on visual cues
Abstract:
The thesis addresses the question of to what extent we can estimate mathematical anxiety based on visual cues. In addition to programming the camera for detecting skeletal points, the work involves data processing and analysis using various machine learning methods. The design for conducting the experiment and recognizing mathematical anxiety stems from a research project titled "Monitoring and Improving Individual Student Treatments in COVID and Post-COVID Conditions," which aims to assist elementary school students in overcoming anxiety while solving mathematical problems. During the data processing, we employed various machine learning classifiers and evaluated the performance of individual classifiers for the selected features. In our case, the Support Vector method proved to be the most effective. However, the results of the classifier performance did not prove to be sufficiently accurate to reliably identify mathematical anxiety based solely on visual cues.

Keywords:mathematical anxiety, machine learning, depth-sensing camera

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back