izpis_h1_title_alt

Kinetika hidrogenacije 2-metilkinolina kot N-heterocikličnega predstavnika tekočih organskih nosilcev vodika
ID Oblak, Jošt (Author), ID Likozar, Blaž (Mentor) More about this mentor... This link opens in a new window, ID Plazl, Igor (Co-mentor)

.pdfPDF - Presentation file, Download (3,49 MB)
MD5: B327B80D96D09F06DDBA097B74F54B6E

Abstract
Kljub vse večjemu interesu za globalni prehod na obnovljive vire energije do danes še ne poznamo takšnega vira energije, ki bi lahko sam nadomestil proizvodnjo energije s strani fosilnih goriv. Slednje bi lahko nadomestili z obnovljivimi energijskimi viri, ki močno zmanjšajo negativen vpliv na okolje. Obnovljivi viri energije v integrirano energijsko omrežje prinašajo nihanja, kar lahko rešimo s shranjevanjem energije ob vrhuncih proizvodnje in ponovnim pošiljanjem v obtok ob primanjkljajih proizvodnje. LOHC sistemi so primer shranjevanja energije na osnovi vodikove energije, ki omogočajo varno shranjevanje in transport. 2-metilkinolin je predstavnik dušikovih heterocikličnih molekul, ki bi se lahko v prihodnje uporabljale kot LOHC komponente. V magistrskem delu smo preučevali kinetiko hidrogenacije 2-metilkinolina na 5 ut. % Ru/Al2O3 katalizatorju. Preverili smo vpliv reakcijskih pogojev temperature, tlaka, mase katalizatorja in začetne koncentracije 2-metilkinolina. S pomočjo (mikro)kinetičnega modeliranja sistema smo preučevali mehanizem in hitrost kemijske reakcije ter izračunali reakcijske kinetične parametre. Rezultati so pokazali, da reakcija znotraj temperaturnega območja 100–180 °C ni močno temperaturno odvisna, tlak in posledično koncentracija vodika v območju med 25 in 75 barov močno vpliva na hitrost reakcije, prav tako pa se izkaže, da povečanje mase katalizatorja od 0,05 g do 0,15 g in znižanje začetne koncentracije 2-metilkinolina iz 2,7 do 0,5 mol L–1 pospešuje hitrost reakcije. Model je sledil trendom eksperimentalnih podatkov z izračunanimi konstantami reakcijske hitrosti za posamičen reakcijski korak na površini katalizatorja k1 = 1500 min–1, k2 = 578 min–1, k3 = 554 min–1, k4 = 60 min–1 ter aktivacijskimi energijami Ea1 = 23463 J mol–1, Ea2 = 16479 J mol–1, Ea3 = 8519 J mol–1 in Ea4 = 18079 J mol–1.

Language:Slovenian
Keywords:tekoči organski nosilci vodika, LOHC, kinetika, katalitska hidrogenacija, 2-metilkinolin
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FKKT - Faculty of Chemistry and Chemical Technology
Year:2023
PID:20.500.12556/RUL-149348 This link opens in a new window
COBISS.SI-ID:167732995 This link opens in a new window
Publication date in RUL:06.09.2023
Views:761
Downloads:53
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Kinetics of 2-methylquinoline hydrogenation as N-heterocyclic representativ of liquid organic hydrogen carriers
Abstract:
Despite the increasing interest in the global transition to renewable energy sources, as of today, there is no such energy source known that could fully replace the energy production from fossil fuels. The latter could be substituted by renewable energy sources, which significantly reduce the negative environmental impact. Renewable energy sources integrated into the energy grid bring about fluctuations, which can be addressed by storing energy during production peaks and releasing it back into the system during production shortages. Liquid Organic Hydrogen Carrier (LOHC) systems represent a form of hydrogen-based energy storage that enables safe storage and transport. 2-methylquinoline is an example of a nitrogen heterocyclic molecule that could potentially be used as a component of LOHC systems. In my master's thesis, I investigated the kinetics of the hydrogenation of 2-methylquinoline on a 5 wt. % Ru/Al2O3 catalyst. I examined the influence of reaction conditions such as temperature, pressure, catalyst mass, and initial concentration of 2-methylquinoline. Through (micro)kinetic modeling of the system, I studied the mechanism and rate of the chemical reaction, and calculated the reaction kinetic parameters. The results demonstrated that the reaction within the temperature range of 100 – 180 °C is not strongly temperature-dependent. Pressure, and consequently hydrogen concentration within the range of 25 to 75 bar, greatly affects the reaction rate. Furthermore, increasing the catalyst mass from 0.05 g to 0.15 g and decreasing the initial concentration of 2-methylquinoline from 2.7 to 0.5 mol L–1 were found to accelerate the reaction rate. The model followed the trends of experimental data with calculated reaction rate constants for individual reaction steps on the catalyst surface: k1=1500 min–1, k2=578 min–1, k3=554 min–1, k4=60 min–1 and activation energies Ea1=23463 J mol–1, Ea2=16479 J mol–1, Ea3=8519 J mol–1 and Ea4=18079 J mol–1.

Keywords:liquid organic hydrogen carriers, LOHC, kinetics, catalytic hydrogenation, 2-methylquinoline

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back