izpis_h1_title_alt

Ustvarjanje ponarejenih videoposnetkov s pomočjo difuzijskih modelov za razširitev zbirke za odkrivanje ponarejenih videoposnetkov
ID MARKELJ, BINE (Author), ID Peer, Peter (Mentor) More about this mentor... This link opens in a new window, ID Batagelj, Borut (Comentor)

.pdfPDF - Presentation file, Download (6,32 MB)
MD5: CB7E73BFC3494D485F984914FF908B82

Abstract
V diplomski nalogi predstavimo postopke in tehnike generiranja globoko ponarejenih videoposnetkov ali krajše globokih ponaredkov (angl. deepfakes). To so videoposnetki, pri katerih je prišlo do manipulacij s tehnikami globokega učenja. V delu se omejimo predvsem na posnetke, pri katerih je prišlo do manipulacij na področju obraza. Običajno so narejeni s pomočjo posebnih generativnih nasprotniških mrež - GAN. Taki videoposnetki predstavljajo velik problem pri širjenju lažnih novic, politični propagandi, uničevanju podobe posameznikov, izdelavi pornografskih vsebin, izsiljevanju itd. V nalogi podrobneje opišemo različne vrste ponarejenih videoposnetkov iz podatkovne zbirke FaceForensics++ in predstavimo lastno metodo za potencialno izdelavo podzbirke omenjene baze z uporabo najnovejših generativnih difuzijskih modelov. To so modeli, ki postopno generirajo slike (in videoposnetke) iz latentnega šuma. Uporabimo specifičen odprtokodni difuzijski model, imenovan stabilna difuzija, ki se uporablja za generiranje slik iz začetnih besedilnih ali slikovnih navodil. Opišemo več tehnik, ki smo jih preizkusili v našem eksperimentu, in analiziramo njihovo kvaliteto in uspešnost. Komentiramo tudi smiselnost uporabe in nevarnost, ki jo predstavljajo ponarejeni videoposnetki, izdelani z difuzijskimi modeli.

Language:Slovenian
Keywords:ponarejeni videoposnetki, globoki ponaredki, globoko učenje, nevronska mreža, difuzijski modeli, stabilna difuzija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-149326 This link opens in a new window
COBISS.SI-ID:165401091 This link opens in a new window
Publication date in RUL:06.09.2023
Views:489
Downloads:124
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Creating fake videos using diffusion models to expand the dataset for fake video detection
Abstract:
In the bachelor's thesis we present techniques and procedures for generating deepfake videos. These are videos that were subjected to manipulations with deeplearning techniques. In our thesis we specialized on the topic of deepfakes, where the facial area was manipulated. They are usually made with the help of special generative adversarial networks - GAN. Such videos represent a major problem in the spread of fake news, political propaganda, destruction of individual's public image, production of pornographic content, extortion, etc. In the thesis we describe in detail different types of fake videos from deepfake database FaceForensics++. We also present our own method for potential creation of a subset of the mentioned database using the latest generative diffusion models. These models progressively generate images (or videos) from latent noise. We use a specific open source diffusion model called stable diffusion, that is used for generating images from text and image prompts. We describe multiple techniques, that we used and tested in our experiment and analyze their quality and success. We also comment on the utility and danger posed by fake videos generated by diffusion models.

Keywords:fake video, deepfake, deep learning, neural network, diffusion models, stable diffusion

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back