izpis_h1_title_alt

Metoda računalniškega vida za dolgoročno sledenje dronov v realnem času
ID Samec, Jaša (Author), ID Kristan, Matej (Mentor) More about this mentor... This link opens in a new window, ID Lukežič, Alan (Comentor)

.pdfPDF - Presentation file, Download (3,91 MB)
MD5: 56ED011B261D92619AA9B4961F8AFA8F

Abstract
S porastom priljubljenosti dronov se je zaradi raznih varnostnih razlogov pojavila tudi zahteva po sistemih, ki jih lahko zaznajo. V nalogi obravnavamo problem zaznavanja dronov z metodami računalniškega vida in predlagamo nov dolgoročni sledilnik, specializiran za detekcijo in sledenje dronov. Predlagan sledilnik je sestavljen iz kratkoročnega sledilnika, detektorja in modula za zaznavanje odpovedi. Sistem deluje tako, da med sledenjem modul za zaznavanje odpovedi neprestano preverja, ali je kratkoročni sledilnik odpovedal in v primeru, da je, ga z uporabo detektorja reinicializira. Odpoved zazna s pomočjo dveh podsistemov, kjer se prvi zanaša na periodično poganjanje detektorja in preverjanja ujemanja detekcij s sledilnikom, drugi pa na zaupanje sledilniku. Pri izdelavi arhitekture metode smo posvetili posebno pozornost tudi hitrosti izvajanja. Predlagamo tri variacije dolgoročnega sledilnika, katere se razlikujejo v hitrosti in natančnosti. Najnatančnejša med njimi doseže mero F1, ki je za 31,8 % višja od detektorja YOLOv5, najhitrejša metoda pa je za 17,6 % hitrejša od omenjenega detektorja in posnetke obdela s hitrostjo 173 sličic na sekundo. Tretja različica detektorja predstavlja dober kompromis med hitrostjo (za 4,1 % hitrejši kot YOLOv5) in natančnostjo (za 29,5 % višja mera F1 kot YOLOv5).

Language:Slovenian
Keywords:droni, vizualno sledenje, dolgoročno sledenje, detektor
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-149212 This link opens in a new window
COBISS.SI-ID:164713475 This link opens in a new window
Publication date in RUL:05.09.2023
Views:700
Downloads:81
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:A computer-vision method for long-term realtime drone tracking
Abstract:
With the rise in popularity of drones and due to various security reasons that come along with them, there has also been a demand for systems that can detect them. In this diploma thesis, we address the problem of drone detection using computer vision methods and propose a new long-term tracker specialized for drone detection and tracking. The proposed tracker consists of a short-term tracker, a detector, and a failure detection module. The system works in such a way that, during tracking, the failure detection module constantly checks whether the short-term tracker has failed and, if so, reinitializes it using the detector. It detects the failure using two subsystems, the first relying on periodically triggering the detector and checking that detections match the tracker, and the second relying on the tracker's confidence. When creating the architecture of the method, we also paid special attention to the speed of execution. We propose three variations of the long-term tracker, which differ in speed and accuracy. The most accurate of them achieves F1, which is 31.8 % higher than the YOLOv5 detector, and the fastest method is 17.6 % faster than the aforementioned detector and processes images at a speed of 173 frames per second. The third version of the detector represents a good compromise between speed (4.1 % faster than YOLOv5) and accuracy (29.5 % higher F1 measure than YOLOv5).

Keywords:drones, visual tracking, long-term tracking, detector

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back