izpis_h1_title_alt

Funkcijsko šifriranje in shema za računanje skalarnih produktov
ID Mitev, Dmitar Zvonimir (Author), ID Marc, Tilen (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (432,25 KB)
MD5: BDD8D4CE0626BFE2DCF2FB8D8C857F26

Abstract
Funkcijsko šifriranje predstavlja posplošitev klasičnega šifriranja z javnim ključem in omogoča nadzorovanje količine informacij, ki se prejemniku po dešifriranju razkrijejo. Različnim uporabnikom omogoča izračun različnih funkcij nad kriptogramom brez razkritja samega čistopisa. Pomembna uporaba funkcijskega šifriranja, ki med drugim izrazito vlogo igra v strojnem učenju z ohranjanjem zasebnosti, je izračun skalarnih produktov. V diplomski nalogi predstavimo osnovne definicije funkcijskega šifriranja. Osredotočimo se na shemo, ki imetnikom zasebnega ključa za vektor y iz kriptograma vektorja x omogoča razkrivanje skalarnega produkta ⟨x, y⟩ in nič drugega. Dokažemo, da je shema varna, če je odločitveni Diffie-Hellmanov problem težek. Shemo tudi implementiramo, jo preizkusimo na praktičnem primeru in predstavimo izmerjene čase izvajanja.

Language:Slovenian
Keywords:kriptografija, funkcijsko šifriranje, skalarni produkt, domneva DDH
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-148414 This link opens in a new window
COBISS.SI-ID:163469571 This link opens in a new window
Publication date in RUL:22.08.2023
Views:1153
Downloads:173
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Functional encryption and a scheme for computing inner products
Abstract:
Functional encryption is a generalisation of the classical public-key encryption, and it enables control over the amount of information that is revealed to the receiver after decryption. It enables different users to compute various functions on the ciphertext without revealing the underlying plaintext. An important application of functional encryption, which plays a major role in privacy-preserving machine learning among other things, is the computation of inner products (scalar products). In this bachelor’s thesis, we present the basic definitions of functional encryption. We focus on a scheme which allows the holders of the secret key for vector y to reveal the inner product ⟨x, y⟩ from the ciphertext of vector x and nothing else. We prove that the scheme is secure, if the decisional Diffie-Hellman problem is hard. Additionally, we provide an implementation of the scheme, we test it on a practical example and we present the measured execution times.

Keywords:cryptography, functional encryption, inner product, scalar product, DDH assumption

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back