izpis_h1_title_alt

Nenadzorovana detekcija anomalij v časovnih vrstah
ID Pecoraro, Luka Salvatore (Author), ID Faganeli Pucer, Jana (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,33 MB)
MD5: E11D564E40B527A135EED5DA401269F7

Abstract
Detekcija anomalij v časovnih vrstah je pomembna za različna področja, kot so finance, zdravstvo, proizvodnja in okoljevarstvo. V praksi so podatki o anomalijah v podatkih redko na voljo, zato je potrebno uporabiti nenadzorovane metode za detekcijo anomalij. V diplomski nalogi smo primerjali 4 metode za nenadzorovano detekcijo anomalij: matrix profile, LOF, isolation forest in samokodirnik. Metode so iz različnih področij računalništva, kot so detekcija osamelcev, strojno učenje in globoko učenje. Razlikujejo so tudi po načinu odkrivanja anomalij: z merjenjem razdalj med časovnimi vrstami, uporabo drevesnih struktur in rekonstrukcijo. Za ovrednotenje metod smo uporabili podatkovni nabor UCR Anomaly Archive in umetno generiran nabor časovnih vrst z anomalijami. Pri vseh metodah smo uporabili tudi dinamično velikost drsečega okna, ki smo jo določili glede na značilnosti posamezne časovne vrste. Izbrane metode smo uporabili tudi za detekcijo anomalij na realnih podatkih iz proizvodnje, ki jih je priskrbelo podjetje Senso4s d.o.o.. Najboljše rezultate smo dosegli z metodo matrix profile, z nekoliko slabšimi rezultati in krajšim izvajalnim časom pa ji je sledila metoda LOF.

Language:Slovenian
Keywords:detekcija anomalij, nenadzorovano učenje, časovne vrste, matrix profile, isolation forest, LOF, samokodirnik
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-148413 This link opens in a new window
COBISS.SI-ID:162288387 This link opens in a new window
Publication date in RUL:22.08.2023
Views:924
Downloads:206
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Unsupervised anomaly detection in time series
Abstract:
Time series anomaly detection is an important task applied in various fields such as finance, healthcare, and meteorological monitoring. Information about the locations of anomalies in various time series is rarely available in real-life settings. Therefore it is necessary to use unsupervised methods for anomaly detection. In this thesis, we compared four unsupervised anomaly detection methods: matrix profile, LOF, isolation forest, and autoencoder. The selected methods belong to different fields of computer science and statistics such as outlier detection, machine learning, and deep learning. They also differ in the way they detect anomalies: measuring distances between time series, using tree structures, and reconstruction. To evaluate the methods, we used the UCR Anomaly Archive dataset and an artificially generated set of time series with anomalies. We also applied a dynamic sliding window size to all methods, which was determined according to the characteristics of different time series. We also used the selected methods to detect anomalies detection on real production data provided by the company Senso4s Ltd.. The best results were obtained with the matrix profile method, followed by the LOF method with slightly worse results and a shorter running time.

Keywords:anomaly detection, unsupervised learning, time series, matrix profile, isolation forest, LOF, autoencoder

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back