izpis_h1_title_alt

Feature selection by combining feature importance and redundancy estimates
ID Najdova, Elena (Author), ID Džeroski, Sašo (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (706,26 KB)
MD5: 7E9BE8A8F6782BA7EBF462689DB13538

Abstract
Feature selection is a crucial task in the process of building predictive models in machine learning. Understanding which data is relevant for our problem and what feature selection method is most compatible with our data is of vital importance to achieve good results. The goal of this thesis was to develop and implement software for feature selection in the machine learning task of classification, based on the maximum relevance minimum redundancy (MRMR) approach. We aimed to create a software which can be used with different measures of relevance and redundancy. This software is then used to compare the performance of the developed approach (choosing k features with the MRMR approach) to the performance of the classical filtering approach, where the top k features with highest relevance are selected (and their redundancy is ignored). We analyze the results and draw conclusions from them. With appropriate relevance and redundancy measures, the MRMR approach can perform much better than the filtering approach.

Language:English
Keywords:feature selection, machine learning, maximum relevance minimum redundancy, classification, predictive model
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-148393 This link opens in a new window
COBISS.SI-ID:158150403 This link opens in a new window
Publication date in RUL:21.08.2023
Views:557
Downloads:73
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Izbiranje značilk s kombiniranjem ocen njihove pomembnosti in redundance
Abstract:
Izbira značilk je ključna naloga v procesu izgradnje vsakega napovednega modela v strojnem učenju. Razumevanje, kateri podatki so pomembni za naš problem in katera metoda izbire značilk je najbolj kompatibilna z našimi podatki, je bistvenega pomena za doseganje dobrih rezultatov pri vsakem problemu nadzorovanega učenja. Cilj te naloge je bil razviti in implementirati programsko opremo za izbiro značilk pri nalogi strojnega učenja, natančneje klasifikaciji, na podlagi pristopa največje pomembnosti in najmanjše redundance (MRMR). Naš cilj je ustvariti programsko opremo, ki se lahko uporablja za izbiro značilk različnimi merami relevantnosti in redundance. To programsko opremo smo nato uporabili za primerjavo uspešnosti razvitega pristopa, kjer k značilk, izberemo z MRMR, z uspešnostjo pristopa filtriranja, pri katerem se izbere k najpomembnejših značilk z največjo pomembnostjo (in se ne upošteva njihova redundanca). Analiziramo rezultate, primerjamo in iz njih potegnemo zaključke. z ustrezno izbiro mer pomembnosti in redundance lahko metoda MRMR deluje veliko boljše.

Keywords:izbira značilk, strojno učenje, največja pomembnost najmanjša redundanca, klasifikacija, napovedni modeli

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back