Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Uporaba metod strojnega učenja za napovedovanje delniških donosov
ID
Breskvar, Žan Mark
(
Author
),
ID
Faganeli Pucer, Jana
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(3,54 MB)
MD5: E00E6718347E676B3C1F40D5E778A9CE
Image galllery
Abstract
V diplomski nalogi smo raziskovali učinkovitost metod strojnega učenja, in sicer metodo naključnega gozda, ''gradient boosting'' in Lasso, pri napovedovanju mesečnih donosov indeksa S&P 500. Naša analiza je temeljila na različnih naborih podatkov, ki vključujejo tehnične, temeljne in ekonomske značilke. Ugotovili smo, da so se tehnični podatki izkazali za najkoristnejše, ekonomski pa so pokazali najslabše rezultate. Med uporabljenimi modeli je Lasso dosegel najboljše rezultate, medtem ko so bili rezultati metode naključnega gozda in ''gradient boosting'' primerljivi. Kljub temu, da napovedovanje donosov na podlagi različnih naborov podatkov ni dalo dobrih rezultatov, smo ugotovili, da je možno z uporabo dolgo-kratke strategije pravilno izbirati delnice, katerim bo cena padla in katerim narastla.
Language:
Slovenian
Keywords:
metode strojnega učenja
,
naključni gozd
,
''gradient boosting''
,
Lasso
,
mesečni donosi
,
indeks S&P 500
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:
2023
PID:
20.500.12556/RUL-148388
COBISS.SI-ID:
158274819
Publication date in RUL:
21.08.2023
Views:
746
Downloads:
82
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
BRESKVAR, Žan Mark, 2023,
Uporaba metod strojnega učenja za napovedovanje delniških donosov
[online]. Bachelor’s thesis. [Accessed 17 June 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=148388
Copy citation
Share:
Secondary language
Language:
English
Title:
The use of machine learning methods in predicting stock returns
Abstract:
In this thesis, we investigated the effectiveness of machine learning methods, namely Random Forest, Gradient Boosting, and Lasso, in predicting the monthly returns of the S&P 500 index. Our analysis was based on various datasets that include technical, fundamental, and economic features. We found that technical data proved to be the most useful, while economic data showed the worst results. Among the used models, Lasso achieved the best results, while the results of the Random Forest and Gradient Boosting methods were comparable. Despite the fact that the prediction of returns based on different datasets did not yield good results, we found that it is possible to correctly select stocks for which the price will rise and fall using a long-short strategy.
Keywords:
machine learning methods
,
random forest
,
gradient boosting
,
Lasso
,
monthly returns
,
S&P 500 index
Similar documents
Similar works from RUL:
Determination of carbamazepine, oxcarbazepine and their metabolites in human plasma by high performance liquid chromatography
Developing a method for amino acid analysis in proteins by high performance liquid chromatography
Determination of meglumine by derivatization with sodium naphthoquinone sulfonate and high performance liquid chromatography
Development of robust mass spectrometric method for determination of lead compounds metabolic stability
Development and validation of analytical method for quantification of levetiracetam in plasma by high performance liquid chromatography
Similar works from other Slovenian collections:
No similar works found
Back