izpis_h1_title_alt

Recent developments on Oka manifolds
ID Forstnerič, Franc (Author)

.pdfPDF - Presentation file, Download (597,52 KB)
MD5: 5EDA3B6DEBDE2FF1923683B7BFBCE3C2
URLURL - Source URL, Visit https://www.sciencedirect.com/science/article/pii/S0019357723000058 This link opens in a new window

Abstract
In this paper we present the main developments in Oka theory since the publication of my book Stein Manifolds and Holomorphic Mappings (The Homotopy Principle in Complex Analysis), Second Edition, Springer, 2017. We also give several new results, examples and constructions of Oka domains in Euclidean and projective spaces. Furthermore, we show that for $n > 1$ the fibre $\mathbb C^n$ in a Stein family can degenerate to a non-Oka fibre, thereby answering a question of Takeo Ohsawa. Several open problems are discussed.

Language:English
Keywords:Oka manifold, Oka map, Stein manifold, elliptic manifold, algebraically subelliptic manifold, Calabi–Yau manifold, density property
Work type:Article
Typology:1.02 - Review Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2023
Number of pages:Str. 367-417
Numbering:Vol. 34, iss. 2
PID:20.500.12556/RUL-148319-4f4d35ad-da25-3733-986d-42e4edd4c27c This link opens in a new window
UDC:517.5
ISSN on article:0019-3577
DOI:10.1016/j.indag.2023.01.005 This link opens in a new window
COBISS.SI-ID:140663299 This link opens in a new window
Publication date in RUL:11.08.2023
Views:717
Downloads:70
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Indagationes mathematicae
Shortened title:Indag. math.
Publisher:Elsevier, Royal Dutch Mathematical Society (KWG)
ISSN:0019-3577
COBISS.SI-ID:25594112 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:Okova mnogoterost, Okova preslikava, Steinova mnogoterost, eliptična mnogoterost, algebraično subeliptična mnogoterost, Calabi–Yaujeva mnogoterost, lastnost gostote

Projects

Funder:EC - European Commission
Funding programme:HE
Project number:101053085
Name:Holomorphic Partial Differential Relations
Acronym:HPDR

Funder:ARRS - Slovenian Research Agency
Project number:P1-0291
Name:Analiza in geometrija

Funder:ARRS - Slovenian Research Agency
Project number:J1-3005
Name:Kompleksna in geometrijska analiza

Funder:ARRS - Slovenian Research Agency
Project number:N1-0237
Name:Holomorfne parcialne diferencialne relacije

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back