izpis_h1_title_alt

Večkriterijsko odločanje in metoda analitičnega hierarhičnega procesa : delo diplomskega seminarja
ID Shafranov, Mykola (Author), ID Žitnik, Arjana (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (323,93 KB)
MD5: FDA64D0B9B87798A5F0BC02546EF1F64

Abstract
Pri problemih večkriterijske optimizacije gre za odločanje, ko na končno izbiro vpliva več kriterijev. V delu diplomskega seminarja se posvetimo metodam, s katerimi rešujemo takšne probleme. Za vse obravnavane metode je značilno, da se pri njih večkriterijski problemi prevedejo na enokriterijske. Za osnovo vzamemo metodo utežene vsote kriterijev, kjer so uteži znane že na začetku. Pri metodi analitičnega hierarhičnega procesa nato upoštevamo še preference odločevalca, ki neposredno vplivajo na končno izbiro. V najbolj preprostem primeru imamo opravka s posebno vrsto pozitivno recipročnih matrik, ki jim pravimo usklajene matrike. Po Perron-Frobeniusovem izreku imajo takšne matrike pozitiven lastni vektor, ki ga po normiranju vzamemo za vektor uteži. V bolj zahtevnem primeru definiramo slučajnostni in usklajenostni indeks, s katerima nato definiramo usklajenostno razmerje matrike. Če matrika ni dovolj usklajena, jo ustrezno popravimo. Sledi še mehka metoda analitičnega hierarhičnega procesa, kjer so preference odločevalca negotove, in jih modeliramo s pomočjo mehkih števil. Za reševanje praktičnega zgleda uporabimo vsako od metod in ugotovimo, da vse metode vrnejo primerljive rezultate.

Language:Slovenian
Keywords:metoda analitičnega hierarhičnega procesa, usklajena matrika, pozitivno recipročna matrika, večkriterijsko odločanje, kriterijska funkcija, mehka števila, geometrijska sredina
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-148110 This link opens in a new window
UDC:519.8
COBISS.SI-ID:159900419 This link opens in a new window
Publication date in RUL:27.07.2023
Views:1491
Downloads:71
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Multiple criteria decision making and analytic hierarchy process
Abstract:
Multiple criteria optimization problems deal with a type of decision making, where the final choice is affected by multiple criteria. This thesis is devoted to a variety of methods, with which such problems can be solved. A typical feature of all the considered methods is that the multiple criteria problems are converted into single criterion ones. As a basis we take the simple additive weighting method, where the weights are known already at the start. The analytic hierarchy process takes into account also the decision-maker's preferences, which directly influence the final choice. The simplest case treats a special type of positive reciprocal matrices, which are called consistent. Perron-Frobenius theorem tells us that these matrices have a positive eigenvector, which after normalization is taken as the weight vector. In more complex cases we define the random index and the consistency index, which are then used to define the consistency ratio of the matrix. If the matrix is not consistent enough, we modify it appropriately. Finally we consider fuzzy analytic hierarchy process, where the decision-maker's preferences are not certain and are modeled using fuzzy numbers. Each of the methods is applied to solve a practical example, for which all the methods produce comparable results.

Keywords:analytic hieirarchy process, consistent matrix, positive reciprocal matrix, multi criteria decision making, criterion function, fuzzy numbers, geometric mean

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back