izpis_h1_title_alt

Robno obnašanje potenčnih vrst : delo diplomskega seminarja
ID Jamnik, Gaja (Author), ID Drinovec Drnovšek, Barbara (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (802,06 KB)
MD5: C8C41D374671F762E13982F4B2A7D348

Abstract
Diplomska naloga spada v področje kompleksne analize, ki se ukvarja z robnim obnašanjem potenčnih vrst. Cilj diplomske naloge je analizirati povezavo med zaporedjem koeficientov v potenčni vrsti z možnostjo holomorfne razširitve funkcije, ki jo vrsta lokalno definira, na robne točke konvergenčnega območja vrste. To poskušamo doseči s študijem lakunarnih vrst, t.j. potenčnih vrst z zaporednimi bloki ničelnih koeficientov, ki jih imenujemo vrzeli. Izpeljemo nekaj kriterijev, ki povedo, pod kakšnimi pogoji lakunarne vrste ne moremo razširiti na nobeno robno točko. V nadaljevanju definiramo pojem prekokonvergence, ki je tesno povezan z vrzelmi v lakunarnih vrstah. Diplomsko nalogo zaključimo z dokazom Szegövega razširitvenega izreka.

Language:Slovenian
Keywords:holomorfna razširitev, potenčna vrsta, robno obnašanje potenčnih vrst, lakunarna vrsta, izrek o vrzelih, prekokonvergenca
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-148109 This link opens in a new window
UDC:517.5
COBISS.SI-ID:159894275 This link opens in a new window
Publication date in RUL:27.07.2023
Views:1429
Downloads:129
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Boundary Behavior of Power Series
Abstract:
The thesis belongs to the field of complex analysis, which deals with the boundary behaviour of power series. The goal of the thesis is to analyse the connection between the sequence of coefficients in a power series with the possibility of holomorphic extension of the function defined locally by the series to the boundary points of the convergence domain of the series. This is attempted by studying lacunary series, which are power series with consecutive blocks of zero coefficients called gaps. Several criteria are derived that indicate under what conditions lacunary series cannot be extended to any boundary point. Furthermore, the concept of overconvergence is defined, which is closely related to the gaps in lacunary series. The thesis concludes with a proof of Szegö’s extension theorem.

Keywords:analytic continuation, power series, boundary behaviour of power series, lacunary series, gap theorem, overconvegence

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back