izpis_h1_title_alt

Vgrajena zasebnost pri videonadzoru prometa
ID KREFT, JAKOB (Author), ID Perš, Janez (Mentor) More about this mentor... This link opens in a new window, ID Ivanovska, Marija (Comentor)

.pdfPDF - Presentation file, Download (22,28 MB)
MD5: 851F4E32BA40789F353185AA503E296D

Abstract
V tej diplomski nalogi je opisan postopek izdelave baze označenih zamegljenih slik cestnega prometa, ki je zasnovana za prihodnje treniranje algoritmov za detekcijo prometa z vgrajeno zasebnostjo. Zameglitev slik je namenjena prikrivanju identitete posameznikov in drugih identifikacijskih podatkov, kar zagotavlja varovanje zasebnosti. Postopek vključuje izdelavo sistema za snemanje prometa z uporabo dveh kamer za Raspberry Pi, ki sta simultano snemali promet – ena je zagotavljala zamegljene in druga ostre posnetke. Slike smo nato poravnali s pomočjo algoritma SIFT. Jasne slike smo označili s pomočjo algoritma DETR, pri čemer so oznake enake tudi za zamegljene slike, saj smo snemanje opravljali z dvema kamerama. Končni rezultat je baza več kot tisoč zamegljenih slik z označbami v formatu COCO. Ta baza je pripravljena za uporabo v nadaljnjih raziskavah in razvoju algoritmov za detekcijo prometa z vgrajeno zasebnostjo.

Language:Slovenian
Keywords:Detekcija prometa, zasebnost, zamegljene slike, Raspberry Pi, DETR, format COCO, baza slik
Work type:Bachelor thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2023
PID:20.500.12556/RUL-147663 This link opens in a new window
COBISS.SI-ID:158433539 This link opens in a new window
Publication date in RUL:10.07.2023
Views:1603
Downloads:99
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Privacy-By-Design Constrained Traffic Video Surveillance
Abstract:
This thesis describes the process of creating a dataset of labeled blurred traffic images, designed for the future training of traffic detection algorithms with built-in privacy. The blurring of images is intended to obscure the identity of individuals and other identifying data, thus ensuring privacy protection. The process includes the development of a traffic recording system using two Raspberry Pi cameras, which simultaneously recorded traffic - one providing blurred and the other sharp images. The images were then aligned using the SIFT algorithm. Clear images were labeled using the DETR algorithm, with the labels being the same for blurred images as we recorded with two cameras. The final result is a database of over a thousand blurred images with labels in COCO format. This dataset is prepared for use in further research and development of traffic detection algorithms with built-in privacy.

Keywords:Traffic detection, privacy, blurred images, Raspberry Pi, DETR, COCO format, image dataset

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back