izpis_h1_title_alt

Razvoj merilnega in komunikacijskega sistema za upravljanje s porabo
ID KASTELIC, KLEMEN (Author), ID Blažič, Boštjan (Mentor) More about this mentor... This link opens in a new window, ID Bregar, Jože (Comentor)

.pdfPDF - Presentation file, Download (1,91 MB)
MD5: 32728167FB787E8CA1849E63EE9CA52A

Abstract
Diplomsko delo obravnava zajem vrednosti skupnega toka porabnikov in posredovanje informacije končnim električnim porabnikom. Obdelane so različne možnosti tako zajema kot posredovanja vrednosti. Delo smo začeli z ugotavljanjem možnosti uporabe obstoječih števcev električne porabe. Omenjeni števci so praviloma brez možnosti komunikacijskih povezav, ki bi jih lahko uporabili. V prihodnosti se za takšne namene obetajo števci s t. i. P1 priključkom. Pri svojem delu smo zato uporabili neodvisen merilnik električnih veličin, ki se običajno uporablja za merjenje energije in tudi za spremljanje ostalih veličin, kot so napetosti, tokovi ter drugi parametri. Tipično podpirajo komunikacijo preko Modbus protokola in RS485 povezave. Za izvedbo diplomskega dela smo predvidevali, da merilnika z MID certifikatom ne potrebujemo. Takšen merilnik se namreč uporablja v primeru, ko so pomembne točne meritve energije, saj se te neposredno obračunavajo pri plačilih porabljene energije. Za prenos informacije smo iskali možnosti uporabe obstoječih električnih in namenskih komunikacijskih namestitev. Odločili smo se, da za začetek preverimo možnosti prenosa informacije preko električne namestitve. Spoznali smo prednosti in slabosti komunikacije po energetskih vodih. Kot pomembno alternativo smo izbrali MQTT protokol, ki je namenjen internetu stvari in ga je možno izvajati tako preko žičnih Ethernet povezav kot preko brezžičnih WiFi omrežij. Za lažje reševanje problema smo si pripravili dva namizna modela. Prvi model vsebuje potrebno AC distribucijo, trifazni merilnik, mikrokrmilnik, PLC vmesnik, napajalnik z baterijo in ostalo potrebno opremo. Model vsebuje tudi možnost priključitve različnih enofaznih porabnikov, s katerimi smo lahko spreminjali skupni tok oziroma vrednost skupnega toka, ki je predmet prenosa do končnih porabnikov. Eden od porabnikov je bila 200 W klasična žarnica z nitko, druge porabnike pa smo priklapljali preko standardne AC vtičnice. Komunikacija med merilnikom poteka po Modbus protokolu. Pri drugem modelu smo uporabili le PLC vmesnik, mikrokrmilnik in baterijo. Za baterijsko napajanje smo se odločili zaradi možnosti preprostega prenašanja modela po različnih prostorih, s čimer smo spreminjali pogoje za PLC komunikacijo. Pri obeh namiznih modelih sta bila uporabljena mikrokrmilnik Raspberry PI in PLC vmesnik ES1642-C. Med njima v obeh primerih poteka komunikacija preko serijskega priključka, uporabljeni so TTL nivoji. Za nadzor komunikacije s prvim modelom smo imeli LED diodo, ki utripne ob vsakem uspešno sprejetem sporočilu o skupni vrednosti toka. Pri prenosu vrednosti skupnega toka preko PLC komunikacije smo prišli do omejitev tako glede hitrosti komunikacije kot velikosti prenesenih paketov. Izbrali smo optimalno možnost prenosa, in sicer tako, da smo prenašali vedno samo en bajt s periodo ene ali več sekund. En bajt je za nas pomenil, da smo morali med vrednosti 0 in 255 čim bolj optimalno predstaviti vrednost skupnega toka, ki je v nekaterih primerih lahko tudi negativen. V nadaljevanju smo prenos preverili tudi preko TCP/IP komunikacije in preko MQTT protokola. Naša naloga je del interneta stvari in MQTT je za naše zahteve med najbolj uporabnimi protokoli. Na osnovi testov s komunikacijami PLC in MQTT/TCP/IP smo lahko pripravili opažene prednosti in slabosti prvega in drugega načina prenosa vrednosti skupnega toka.

Language:Slovenian
Keywords:električni števec, komunikacija po električni namestitvi, MQTT, mikrokrmilnik, rezanje električnih konic
Work type:Bachelor thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2023
PID:20.500.12556/RUL-146345 This link opens in a new window
COBISS.SI-ID:153412355 This link opens in a new window
Publication date in RUL:24.05.2023
Views:714
Downloads:116
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Development of a metering and communication system for demand management
Abstract:
The diploma thesis discusses reading the total load current value and sending this data to electricity end-users. It takes a look at the different options of reading and sending values. We began the research by determining the possibility of using existing electricity meters. Such meters usually do not provide communication links that we could use. In the future, meters with the so-called P1 connector will be used for such purposes. During the research we used a standalone meter of electrical quantities, which is usually used to measure energy and to monitor other quantities, such as voltages, currents and other parameters. They typically support communication via the Modbus protocol and the RS485 connection. We assumed that we would not need a meter with the MID certificate to conduct our research. Such meters are used when precise energy measurements are required, as they are directly charged on the energy bill. For data-sending purposes, we looked at the possibility of using the existing electrical and dedicated communication installations. We decided to start by examining the possibility of sending data via the electrical installations. We learnt the advantages and disadvantages of communicating via power lines. We chose the MQTT protocol as a good alternative; it is designed for the Internet of Things and can be implemented via wired Ethernet connections or wireless WiFi networks. We prepared two desktop models to facilitate the problem-solving process. The first model contains the required AC distribution, a three-phase meter, a microcontroller, a PLC interface, a power supply unit with a battery, and all other required equipment. The model also provided the option of connecting different single-phase loads, which were used to modify the total current or the total current value transmitted to end-users. One load was a 200 W incandescent lightbulb, while other loads were connected via a standard AC socket. Communication with the meter took place via the Modbus protocol. In the second model we used only a PLC interface, a microcontroller and a battery. We decided on battery power supply so we could easily transport the model from room to room, thus changing the conditions for PLC communication. We used the Raspberry PI microcontroller and the ES1642-C PLC interface in both desktop models. In both cases, communication between the two took place via a serial port; TTL levels were used. To control communication with the first model, we used a light-emitting diode (LED), which flashes every time a message about the total current value is successfully received. When transmitting the total current value via PLC, we encountered a limited communication speed and size of transmitted packets. We chose the optimal transmission option by transmitting only one byte at a time with a period of one or more seconds. One byte meant that we had to optimally present the total current value between the values of 0 and 255; in some cases, the current could even be negative. Afterwards, we tested the transmission via TCP/IP communication and the MQTT protocol. The thesis deals with the Internet of Things and MQTT was one of the most useful protocols for meeting our requirements. Based on the tests using PLC and MQTT/TCP/IP communications, we were able to sum up the observed advantages and disadvantages of the first and second method of transmitting the total current value.

Keywords:electricity meter, communication via electrical installations, MQTT, microcontroller, cutting peak-time electricity use

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back