izpis_h1_title_alt

On critical exponential Kirchhoff systems on the Heisenberg group
ID Li, Shiqi (Author), ID Liang, Sihua (Author), ID Repovš, Dušan (Author)

.pdfPDF - Presentation file, Download (307,17 KB)
MD5: 8EA174092E019693ADAAEADEFA76289C
URLURL - Source URL, Visit https://link.springer.com/article/10.1007/s12215-022-00815-x This link opens in a new window

Abstract
In this paper, existence of solutions is established for critical exponential Kirchhoff systems on the Heisenberg group by using the variational method. The novelty of our paper is that not only the nonlinear term has critical exponential growth, but also that Kirchhoff function covers the degenerate case. Moreover, our result is new even for the Euclidean case.

Language:English
Keywords:Kirchhoff system, Heisenberg group, critical exponential growth, variational method
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Author Accepted Manuscript
Year:2023
Number of pages:Str. 2565-2577
Numbering:Vol. 72, iss. 4
PID:20.500.12556/RUL-146157 This link opens in a new window
UDC:517.956.2
ISSN on article:0009-725X
DOI:10.1007/s12215-022-00815-x This link opens in a new window
COBISS.SI-ID:121565699 This link opens in a new window
Publication date in RUL:22.05.2023
Views:488
Downloads:57
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Rendiconti del Circolo Matematico di Palermo
Shortened title:Rend. Circ. Mat. Palermo
Publisher:Springer Nature, Circolo Matematico di Palermo
ISSN:0009-725X
COBISS.SI-ID:29690112 This link opens in a new window

Projects

Funder:Other - Other funder or multiple funders
Funding programme:Changchun Normal University
Project number:SGSRPCNU [2022], no. 059

Funder:Other - Other funder or multiple funders
Funding programme:Foundation for China Postdoctoral Science Foundation
Project number:2019M662220

Funder:Other - Other funder or multiple funders
Funding programme:Department of Education of Jilin Province, Research Foundation
Project number:JJKH20211161KJ

Funder:Other - Other funder or multiple funders
Funding programme:Natural Science Foundation of Jilin Province
Project number:YDZJ202201ZYTS582

Funder:ARRS - Slovenian Research Agency
Project number:P1-0292
Name:Topologija, geometrija in nelinearna analiza

Funder:ARRS - Slovenian Research Agency
Project number:N1-0278

Funder:ARRS - Slovenian Research Agency
Project number:N1-0114
Name:Algebrajski odtisi geometrijskih značilnosti v homologiji

Funder:ARRS - Slovenian Research Agency
Project number:N1-0083
Name:Forsing, fuzija in kombinatorika odprtih pokritij

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back