izpis_h1_title_alt

Funkcija in molekularni mehanizmi malih proteinov pri uravnavanju odziva SOS bakterij na poškodbe genomske DNA
ID Pavlin, Anja (Author), ID Butala, Matej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,85 MB)
MD5: 2F05992DFC5E739BB26E9A9275B633CB

Abstract
Porast bakterijskih patogenov, odpornih proti več antibiotikom, je velik zdravstveni problem. Ker novih antibiotikov ni lahko najti, se veliko raziskav usmerja v iskanje možnosti za povečanje učinkovitosti že znanih antibiotikov. Številni antibiotiki v subinhibitornih koncentracijah izzovejo poškodbe DNA v bakterijah. Te v odgovor na poškodovano DNA sprožijo odziv SOS, pri katerem najprej sintetizirajo encime, ki natančno popravijo DNA. Ob hujših poškodbah DNA, če te niso bile odpravljene, pa se kasneje v odzivu SOS zgodi sinteza mutagenih DNA-polimeraz, ki omogočajo popravljanje DNA, podvrženo napakam. Tako uvedene mutacije v bakterijskem genomu pa lahko vodijo do razvoja odpornosti proti antibiotikom. Dolgo je veljala predpostavka, da sta transkripcijski faktor LexA in protein RecA edina regulatorja odziva SOS. Nedavno je bilo dokazano, da bakteriofag GIL01, ki okužuje bakterijo Bacillus thuringiensis serovar israelenis, nosi zapis za mali protein gp7, ki se neposredno veže z represorjem LexA in zveča njegovo afiniteto do tarčnih nukleotidnih zaporedij. Prepoznava funkcije proteina gp7 je spodbudila teorijo o obstoju malih proteinov, ki delujejo kot koregulatorji LexA in s tem zagotavljajo dodatno raven regulacije odziva SOS. V doktorskem delu smo dokazali, da je protein gp7 globalni regulator prepisa genov v bakteriji B. thuringiensis, saj zavira prepis 1,2 % bakterijskih genov. Naši rezultati so pokazali, da je gp7 ključni dejavnik za inhibicijo prehoda faga pBtic235, ki z GIL01 sobiva v bakteriji, v litični cikel. Protein gp7 tako zagotovi fagu GIL01, da po poškodbi DNA proizvede več potomcev kot fag pBtic235. Razrešili smo mehanizem delovanja proteina gp7, ki z vezavo na LexA reorientira DNA-vezavni domeni v dimeru LexA v konformacijo, potrebno za vezavo na DNA, kar zviša afiniteto represorja LexA do DNA. Naši rezultati dokazujejo obstoj po funkciji podobnih proteinov, kot je protein gp7, tudi v drugih bakterijah: (i) homologov gp7 nekaterih drugih tektivirusov, ki okužujejo bakterije iz skupine Bacillus cereus sensu lato, in (ii) proteina DdrR bakterije Acinetobater baumannii. Naši rezultati torej nakazujejo obstoj malih proteinov s podobnim delovanjem, kot ga ima gp7, tudi v drugih bakterijah, ki kot koregulatorji LexA in LexA podobnih proteinov predstavljajo dodatno raven uravnavanja prepisa genov v odzivu SOS.

Language:Slovenian
Keywords:odziv SOS, odpornost, Bacillus thuringiensis, LexA, bakteriofag, koregulator, polilizogenija
Work type:Doctoral dissertation
Organization:MF - Faculty of Medicine
Year:2023
PID:20.500.12556/RUL-146141 This link opens in a new window
Publication date in RUL:21.05.2023
Views:698
Downloads:116
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The function and molecular mechanisms of small proteins that control the bacterial SOS response to genomic stress
Abstract:
The increase in bacterial pathogens resistant to multiple antibiotics is a major health problem. Since new antibiotics are not easy to find, much of the research is focused on finding ways to increase the effectiveness of already known antibiotics. At subinhibitory concentrations, many antibiotics induce DNA damage in bacteria. In response to the damaged DNA, bacteria initiate a SOS response in which they first produce enzymes that precisely repair the DNA. In the case of severe DNA damage, and later in the SOS response, if the DNA damage has not been repaired, synthesis of error-prone DNA polymerases occurs that support replicative bypass of damaged bases that arrest high-fidelity repair. Mutations introduced into the bacterial genome in this manner can lead to the development of antibiotic resistance. For a long time, it was assumed that the transcription factor LexA and the protein RecA were the only regulators of the SOS response. Recently, it was shown that the bacteriophage GIL01 infecting Bacillus thuringiensis serovar israelenis carries a gene for the small protein gp7 that binds directly to the LexA repressor and increases its affinity for target nucleotide sequences. Recognition of the gp7 protein suggested the existence of small proteins that act as coregulators of LexA, providing an additional level of regulation of the SOS response. In this dissertation, we demonstrated that the gp7 protein is a global regulator of gene transcription in the bacterium B. thuringiensis, as it inhibits the transcription of 1.2 % of bacterial genes. Our results show that gp7 is the key factor that inhibits the transition of phage pBtic235, which coexists with GIL01 in the bacterium, into the lytic cycle. Thus, the gp7 protein ensures that the phage GIL01 produces more progeny than the phage pBtic235 after DNA damage. We have elucidated the mechanism of action of the gp7 protein, which, by binding to LexA, reorients the DNA binding domain of the LexA dimer into the conformation required for binding to DNA, which increases the affinity of the LexA repressor for DNA. Our results show that functionally similar proteins, such as the gp7 protein, exist in other bacteria: (i) gp7 homologs of other tectiviruses infecting bacteria from the group Bacillus cereus sensu lato and (ii) the DdrR protein of the bacterium Acinetobater baumannii. Thus, our results suggest the existence of small proteins with a similar function to gp7 in other bacteria as well, which, as co-regulators of LexA and LexA-like proteins, represent an additional level of regulation of gene transcription in the SOS response.

Keywords:SOS response, resistance, Bacillus thuringiensis, LexA, bacteriophage, coregulator, polylysogeny

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back