izpis_h1_title_alt

Vloga specifičnih presnovnih vzorcev možganov v diferencialni-diagnozi in razumevanju patofiziologije
ID Rus, Tomaž (Author), ID Trošt, Maja (Mentor) More about this mentor... This link opens in a new window, ID Ležaić, Luka (Comentor)

.pdfPDF - Presentation file, Download (41,96 MB)
MD5: 400B0B42A86C94670DEC99711474D6A9

Abstract
Uvod: Nevrodegenerativne bolezni možganov so kronična, napredujoča in neozdravljiva obolenja, ki se klinično izrazijo s kognitivnim upadom in/ali motnjami gibanja. Zgodnja klinična diagnostična natančnost je relativno nizka. V pomoč pri natančnejši zgodnejši diagnozi in razlikovanju med njimi se vse bolj uveljavljajo različni biološki označevalci, biokemični in slikovni. Med slednje sodi tudi funkcijsko slikanje možganov s 18F-FDG PET, s katerim lahko merimo presnovo glukoze, ki odraža sinaptično aktivnost nevronov. Presnova glukoze v možganih se spremeni že v zelo zgodnjih fazah nevrodegenerativnih bolezni. Analiza 18F-FDG PET slik možganov nam lahko pomaga pri razlikovanju med različnimi nevrodegenerativnimi sindromi, ki so lahko klinično zelo podobni, in pri spoznavanju patofizioloških procesov v možganih. Z multivariatno statistično obdelavo 18F-FDG PET slik lahko identificiramo za nevrodegenerativni sindrom specifične presnovne vzorce funkcijsko povezanih možganskih področij, ki predstavljajo presnovni biološki označevalec določenega nevrodegenerativnega sindroma. Cilji doktorske disertacije so: (1) identifikacija in validacija presnovnega vzorca, specifičnega za sporadično Creutzfeldt-Jakobovo bolezen, ter preučitev njegovih lastnosti; (2) analiza diagnostične natančnosti klinične diagnoze nevrodegenerativnih parkinsonizmov v primerjavi z avtomatsko diagnozo na podlagi analize 18F-FDG PET slik; (3) analiza izraženosti in specifičnosti motoričnega in kognitivnega presnovnega vzorca, značilnega za Parkinsonovo bolezen (PB), v različnih fazah bolezni in pri drugih parkinsonizmih. Metode: V retrospektivni raziskavi smo za dosego vseh treh ciljev analizirali klinične podatke in 18F-FDG PET slike možganov 784 preiskovancev: 29 bolnikov s Creutzfeldt-Jakobovo boleznijo (CJB), 26 bolnikov z Alzheimerjevo demenco (AD), 20 bolnikov z vedenjsko različico frontotemporalne demence bvFTD), 356 bolnikov s PB, 125 bolnikov z multisistemsko atrofijo, 113 bolnikov s progresivno supranuklearno parezo in 115 zdravih preiskovancev (ZP) iz petih centrov. Vsi preiskovanci so opravili 18F-FDG PET slikanje možganov. Po predpripravi slik smo za dosego cilja (1) z metodo skalirani subprofilni model, zasnovan na analizi glavnih komponent (SSM-PCA), analizirali 18F-FDG PET slike možganov bolnikov s CJB in ZP in identificirali ter validirali vzorec, specifičen za sporadično CJB (CJDRP); za dosego cilja (2) smo določili natančnost klinične diagnoze parkinsonizmov 12 mesecev po slikanju in jo primerjali z diagnozo, ki jo izračuna avtomatski logistični diferencialno diagnostični algoritem na podlagi analize 18F-FDG PET slik, kar je bil diagnostični zlati standard; in za dosego cilja (3) smo analizirali razliko v izraženosti motoričnega in kognitivnega presnovnega možganskega vzorca, specifičnega za PB v različnih fazah PB, jo primerjali z drugimi parkinsonskimi sindromi in ovrednotili njen pomen v diferencialni diagnozi parkinsonizmov. Rezultati: (1) Identificirali in validirali smo CJDRP in ugotovili signifikantno korelacijo med njegovo izraženostjo in kliničnimi lastnostmi bolnikov. Dokazali smo, da je vzorec specifičen za CJB. (2) Primerjava klinično postavljene diagnoze z avtomatsko je razkrila njeno 94,7-% občutljivost, 83,3-% specifičnost, 81,8-% pozitivno napovedno vrednost (PNV) in 95,2-% negativno napovedno vrednost (NNV) za diagnozo PB ter 88,2-% občutljivost, 76,9-% specifičnost, 71,4-% PNV in 90,9-% NNV za diagnozo atipičnih parkinsonizmov. (3) Razmerje med motoričnim in kognitivnim presnovnim vzorcem pri bolnikih s PB je bilo konstantno. Razlika med obema vzorcema je z napredovanjem bolezni vztrajno naraščala v več presečnih in longitudinalnih kohortah. Poleg tega je kombinacija motoričnega vzorca in razlike med obema vzorcema ustrezno razlikovala bolnike s PB od atipičnih parkinsonizmov. Zaključek: V tej disertaciji smo identificirali nov multivariatni presnovni vzorec možganov, specifičen za CJB, ki ima pomemben potencial v nadaljnjih raziskavah nevrodegenerativnih bolezni. Dokazali smo superiornost avtomatske diagnoze, temelječe na 18F-FDG PET, v primerjavi s klinično. Na podlagi razmerij med motoričnim in kognitivnim presnovnim vzorcem pri PB pa lahko sklepamo o napredovanju okvare možganskih omrežij, ki je skladna z Braakovo hipotezo. S to raziskavo smo omogočili nov vpogled v patofiziologijo nevrodegeneracije pri CJB, PB in atipičnih parkinsonizmih ter postavili podlago za uvedbo natančne diagnostične metode, ki temelji na avtomatizirani oceni multivariatnih možganskih presnovnih vzorcev, v klinično prakso. Oboje je predpogoj za raziskovanje potencialnih novih zdravljenj nevrodegenerativnih bolezni. Omenjene omrežne analitične metode se vse bolj uveljavljajo pri raziskovanju možganskih omrežij in klinični diagnostiki nevrodegenerativnih bolezni. Raziskave, ki so del te doktorske disertacije, so prispevale v zakladnico skupnega znanja o funkcijskih možganskih omrežjih, ki ga natančneje povzemamo v zadnjem poglavju.

Language:Slovenian
Keywords:Parkinsonova bolezen, parkinsonizmi, Creutzfeldt-Jakobova bolezen, diferencialna diagnoza, FDG PET, presnovni možganski vzorci
Work type:Doctoral dissertation
Organization:MF - Faculty of Medicine
Year:2023
PID:20.500.12556/RUL-145880 This link opens in a new window
Publication date in RUL:17.05.2023
Views:536
Downloads:78
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Role of specific metabolic patterns in differential diagnosis and understanding the pathophysiology of neurodegenerative brain disorders
Abstract:
Background: Neurodegenerative brain disorders are chronic, progressive, and incurable diseases that clinically manifest with cognitive decline and/or movement disorders. Early clinical diagnostic accuracy is relatively low. In recent years, various imaging biomarkers were studied to gain better diagnostic accuracy in early disease stages and to distinguish among similar syndromes. Functional brain imaging with 18F-FDG PET measures regional glucose metabolism, which reflects the synaptic activity of neurons. Brain glucose metabolism is altered already at early stages of neurodegenerative diseases. 18F-FDG PET brain analysis can help us to differentiate between different neurodegenerative syndromes and to learn about pathophysiological processes in the brain. Furthermore, multivariate statistical analysis of 18F-FDG PET images enable us to identify syndrome-specific metabolic patterns of functionally interconnected brain areas that serve as a metabolic biomarker of a particular neurodegenerative syndrome. Aims of this dissertation were (1) to identify and validate a metabolic pattern specific for sporadic Creutzfeldt-Jakob disease (CJD) and to study its properties; (2) analysis of the diagnostic accuracy of the clinical diagnosis of neurodegenerative parkinsonisms in comparison to automated 18F-FDG PET based diagnosis; and (3) analysis of motor and cognitive metabolic patterns characteristic for Parkinson's disease (PD) and relationship between them at different stages of the disease and in comparison to other parkinsonian syndromes. Methods: In a retrospective study, we analyzed clinical data and 18F-FDG PET brain images of 784 subjects: 29 patients with CJD, 26 patients with Alzheimer’s dementia (AD), 20 patients with behavioral variant of frontotemporal dementia (bvFTD), 356 patients with PD, 125 patients with multisystem atrophy, 113 patients with progressive supranuclear paresis (the latter two entities combined into an atypical parkinsonian syndrome (APS) group) and 115 healthy subjects (HS). All subjects underwent 18F-FDG PET brain imaging. After image preprocessing, we (1) analyzed the 18F-FDG PET brain images of patients with CJD and HS using a scaled subprofile modelling – principal component analysis (SSM-PCA) method to identify and validate a metabolic pattern specific for CJD; (2) determined the accuracy of the clinical diagnosis of parkinsonisms 12 months after imaging and compared it with the diagnosis calculated by an automatic logistic differential diagnostic algorithm based on 18F-FDG PET images which was considered gold standard; (3) analyzed the difference in motor and cognitive brain metabolic patterns specific for PD in different stages of PD, compared it with other parkinsonian syndromes and evaluated its role in differential diagnosis. Results: (1.) CJDRP was identified and validated and its clinical significance was proven by significant correlations with patients’ clinical measures. It was found to be specific for CJD in contrast to AD and bvFTD. (2.) A comparison of real-life clinical diagnosis with automated diagnosis based on 18F-FDG PET as the gold standard showed 94.7% sensitivity, 83.3% specificity, 81.8% positive predictive value (PPV), and 95.2% negative predictive value (NPV) for PD and 88.2%, 76.9%, 71.4%, and 90.9% for APS diagnosis made by clinical neurologists. (3.) A consistent relationship between motor and cognitive patterns in PD patients was found. The delta, the difference between motor and cognitive PD patterns, steadily progressed with disease progression in several cross-sectional and longitudinal cohorts. Moreover, combination of motor pattern and the delta accurately discriminated PD patients from APS. Conclusion: In this research project, we provided a novel multivariate CJD specific brain pattern with potential use in basic neurodegenerative research. Further, superiority of 18F-FDG PET based diagnosis against clinical one has been demonstrated in real clinical practice and a study of metabolic brain patterns in PD associated with motor symptoms and cognition provided clues of disease/neurodegeneration progression consistent with the Braak hypothesis. To conclude, with this research, we provided novel insights into the pathophysiology of neurodegeneration in CJD, PD and APS and laid the foundation for the introduction of algorithm-based diagnosis established on the basis of multivariate brain patterns into clinical practice. Pathophysiological knowledge and accurate diagnosis are prerequisites for successful disease modifying trials in the future. The above-mentioned network analytical methods are increasingly being used in brain network research and in the clinical diagnosis of neurodegenerative diseases. This PhD thesis has contributed to the general knowledge of functional brain networks, an emerging scientific field, which is in detail reviewed in the last chapter of dissertation.

Keywords:Parkinson's disease, Parkinsonisms, Creutzfeldt-Jakob disease, differential diagnosis, FDG-PET, metabolic brain networks

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back