Electrical steel sheet is a material widely used for production and conversion of electrical energy into mechanical. Its main characteristics are low magnetic losses and high relative permeability. Depending on the magnetic properties and purpose of use, electrical steels are classified into two groups, grain-oriented and non-grain-oriented. The latter is used for making cores for electric motors that can be found in various areas of our everyday life. The efficiency of electrical machines is influenced by different factors, such as sheet thickness, chemical composition, texture, grain size and other.
In this master’s thesis, we researched heat treatment effect on magnetic properties of stator stacks from fully-finished non-oriented electrical steel sheets. The focus was on how different annealing parameters influence the total magnetic losses. We used stator stacks made from fully-finished electrical steel sheet, which grade was M600-50A HP. The samples were exposed to different heat treatment conditions, namely non annealed, annealed in exothermic atmosphere at 800 °C and annealed in a reductive atmosphere of gas mixture of 80 % N2 and 20 % H2 at temperatures of 600 °C, 700 °C, 800 °C and 840 °C, respectively. Measurements of magnetic and other physical properties were performed on stator stacks using Brockhaus MPG 200D machine. From results we then plotted the curves of relative permeability and total power losses. We prepared metallographic samples and determined their grain size classification using optical microscope. Deformed areas caused by punching were also observed. Furthermore, we determined the thickness of intermediate layer between the two lamellas and analysed its micro chemical composition with the help of scanning electron microscope. Using the electron backscatter diffraction method we analysed the texture and orientation of crystal grains and determined grain diameter in relation to area fraction. We also did the hardness measurements (HV0,1) from cutting edge towards the middle and determined the holding force of T segments and tear off force of interlock pins.
|