Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Oblačna tehnologija in napovedovanje proizvodnje sončnih celic s strojnim učenjem : magistrsko delo
ID
Nabergoj, Veronika
(
Author
),
ID
Bernik, Janez
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(2,68 MB)
MD5: D922402C6553B64A18E535FADE969A1F
Image galllery
Abstract
V magistrskem delu je opisano delovanje oblačne tehnologije in vse storitve, ki jih vključuje. V sklopu oblačne tehnologije so opisane tudi prednosti in slabosti takšnega načina dela. Opisano je tudi strojno učenje, podrobno pa je opisan algoritem XGBoost, ki je bil tudi uporabljen pri napovedovanju proizvodnje sončnih celic. S pomočjo oblačnih storitev je bilo vzpostavljeno tudi napovedovanje proizvodnje sončnih celic. Učenje modelov in napovedovanje je potekalo s pomočjo strojnega učenja. Vsi podatki in potek dela so opisani in ustrezno prikazani.
Language:
Slovenian
Keywords:
strojno učenje
,
napoved proizvodnje sončnih celic
,
oblačna tehnologija
,
trgovanje z električno energijo
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2023
PID:
20.500.12556/RUL-144958
UDC:
004.4
COBISS.SI-ID:
146443267
Publication date in RUL:
25.03.2023
Views:
638
Downloads:
96
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Cloud Technology and Solar Panel Production Prediction with Machine Learning
Abstract:
In this master's thesis the cloud technology and all the services they include are described. In the cloud technology part of the thesis advantages and disadvantages of working with the services are stated. The machine learning part is also described with an emphasis on the algorithm XGBoost that was used for solar panel production prediction. Solar panel production prediction has been constructed with the help of cloud services. The model training and prediction was performed with machine learning. All the data used and the steps taken are described and suitably presented.
Keywords:
machine learning
,
solar panel production prediction
,
cloud technology
,
electricity trading
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back