izpis_h1_title_alt

Samodejno beleženje statistike lige NBA preko prenosa v živo
ID Veršnik, Anže (Author), ID Šajn, Luka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (44,13 MB)
MD5: 6B8652363741DF9F29CDF2F16A703588

Abstract
Ljudje pogosto delamo napake, zato vedno bolj stremimo k avtomatizaciji vseh aspektov življena. Tudi področje športnih panog ni izjema. Več kot desetletje nazaj so tekme analizirali ljudje, sedaj za ekipe to počne umetna inteligenca. Zaradi njenega hitrega razvoja v zadnjem desetletju, so nevronske mreže vedno bolj natančne, hitre in v metrikah na določenih področjih dosegajo boljše rezultate kot ljudje. Motivacija za izdelavo magistrske naloge je razvoj algoritma, ki bi zaznaval statistiko med prenosom lige NBA. Prav tako bi vizualno z obogateno resničnostjo uporabniku pomagal pri razumevanju igre. Za cilj smo si zadali izdelavo algoritma, ki s čim višjo natančnostjo sledi igralcem na igrišču in detektira njihove akcije. V okviru magistrske naloge bomo tako raziskali sodobne in učinkovite metode znotraj problemske domene ter jih prilagodili za naš primer. Razvili bomo algoritem, ki uspešno zaznava igralce na igrišču in jih klasificirali v pripadajočo ekipo z uporabo nevronskih mrež. Z uporabo homografske transformacije bomo prenesli njihovo lokacijo v dvodimenzionalni prostor na igrišču ter definirali nov algoritem za zaznavo akcij, ki jih izvajajo igralci in pridobili potrebne podatke za beleženje njihovih statistik. Tekom implementacije algoritma smo preizkusili različne metode reševanja problema. Ugotovili smo njihovo uspešnost in analizirali njihove prednosti ter slabosti.

Language:Slovenian
Keywords:homografija, računalniški vid, detekcija, avtomatsko beleženje statistike, košarka, analiza video posnetkov, nevronske mreže, klasifikacija, sledenje objektov
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-144949 This link opens in a new window
COBISS.SI-ID:150891267 This link opens in a new window
Publication date in RUL:24.03.2023
Views:811
Downloads:166
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Automatic tracking of NBA statistics from a live broadcast
Abstract:
People often make mistakes, that is why we try to automate every aspect of our lives. The field of sports is not an exception. While only a bit more than a decade ago people analyzed games, this is now done by artificial intelligence. Because of its fast development in the last ten years, neural networks are now faster, more accurate and in those metrics better then its human counterparts in some fields. The motivation for the master's thesis is thus to develop an algorithm, that can detect player statistics during an NBA broadcast. It would also help the user to better understand the game with the use of augmented reality. The aim was to create an algorithm that could detect the players on the court and track their actions with the highest accuracy possible. In the framework of the master's thesis we studied modern and effective methods in the knowledge domain. We developed an algorithm that could successfully detect players on the court, and classify them to their respective team with a neural network. With the use of a the homography transformation we moved the positions of the players to a two dimensional space on the court. We defined a new algorithm to detect the actions of the players, and thus their statistics. During the implementation of the algorithm we tried different methods to solve the problem. We analyzed their effectiveness and discussed their strengths and weaknesses.

Keywords:homography, computer vision, detection, automatic tracking of statistics, basketball, video analysis, neural networks, classification, object tracking

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back