Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Implementacija priporočilnega sistema za hrano v aplikaciji Mapper
ID
SIMČIČ, ANDRAŽ
(
Author
),
ID
Žabkar, Jure
(
Mentor
)
More about this mentor...
,
ID
Ispirova, Gordana
(
Comentor
)
PDF - Presentation file,
Download
(4,47 MB)
MD5: C7185FC7F085A9CF674FFA3AC85A80F0
Image galllery
Abstract
V času vedno večjega ozaveščenja ljudi glede zdravja in prehranjevalnih navad je zelo težko priti do kakovostnih informacij o prehranskih vrednostih živil in obrokov. V ta namen na IJS razvijamo spletno aplikacijo Mapper in mobilno aplikacijo Eatvisor, ki bi pomagali pri reševanju te problematike. Spletna aplikacija Mapper je zasnovana kot orodje za nutricioniste, podjetja in trgovce za urejanje prehranskih hranilnih vrednosti živil in obrokov. Za prikaz, beleženje in urejanje prehranskih odločitev uporabnikov pa se razvija Eatvisor. Del vmesnika uporabniškega programa (API) omenjene aplikacije Mapper je tudi priporočilni sistem, ki je osrednja tema diplomske naloge. Da bi ta priporočilni sistem deloval že na samem začetku uporabe aplikacije, potrebujemo čim več ustreznih podatkov. Zato smo najprej ustrezno obdelali in uporabili informacije o živilih, obrokih, informacijah o udeležencih in drugih podatkih, pridobljenih v sklopu nacionalne raziskave SI.Menu 2017/18. Nato smo izdelali API, ki omogoča priporočanje hrane na podlagi pridobljenih podatkov in implementiranega algoritma. Za uporabo tega API, smo tudi nadgradili funkcionalnost aplikacije Eatvisor za prikaz priporočenih obrokov. Prispevek diplomske naloge je delujoč priporočilni sistem v mobilni aplikaciji Eatvisor, ki deluje preko nadgrajenega API-ja aplikacije Mapper.
Language:
Slovenian
Keywords:
priporočilni sistem
,
API
,
Mapper
,
OPKP
,
Eatvisor
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2023
PID:
20.500.12556/RUL-144843
COBISS.SI-ID:
148116739
Publication date in RUL:
16.03.2023
Views:
780
Downloads:
118
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
SIMČIČ, ANDRAŽ, 2023,
Implementacija priporočilnega sistema za hrano v aplikaciji Mapper
[online]. Bachelor’s thesis. [Accessed 19 May 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=144843
Copy citation
Share:
Secondary language
Language:
English
Title:
Implementation of food recommendation system in Mapper application
Abstract:
In an era of increasing awareness among people regarding health and dietary habits, it is very difficult to obtain quality information about the nutritional value of food and meals. To address this issue, we are developing the Mapper web application and the Eatvisor mobile application at IJS, which would help in solving this problem. The web application Mapper is designed as a tool for nutritionists, companies, and merchants to manage the nutritional values of foods and meals. Eatvisor is being developed for displaying, recording, and editing users' dietary decisions. One of the main themes of the thesis is the recommendation system, which is a part of the application programming interface (API) of the Mapper application. To ensure that the recommendation system works right from the start of using the application, we need as much relevant data as possible. Therefore, we first processed and used the information on food, meals, user information and other data obtained through the SI.Menu survey. We then developed an API that enables food recommendation based on the obtained data and the implemented algorithm. To use this API, we also upgraded the functionality of the Eatvisor application to display recommended meals. The contribution of the thesis is a functioning recommendation system in the Eatvisor mobile application, which operates through the upgraded API of the Mapper application.
Keywords:
recommendation system
,
API
,
Mapper
,
OPKP
,
Eatvisor
Similar documents
Similar works from RUL:
Machine learning on embedded platforms
Super resolution of face images in digital forensics
Automated stopping of the cream-whipping machine using machine learning
Color palette generation with Conditional Generative Adversarial Networks
Anomaly detection in EPT MRI brain images of phantoms
Similar works from other Slovenian collections:
No similar works found
Back