Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Abstrakcija oblik celičnih predelkov s pomočjo globokega učenja
ID
ENOVA, KLEMEN JAN
(
Author
),
ID
Marolt, Matija
(
Mentor
)
More about this mentor...
,
ID
Žerovnik Mekuč, Manca
(
Comentor
)
PDF - Presentation file,
Download
(4,18 MB)
MD5: 38B7921268206615A680D9C2448EDC32
Image galllery
Abstract
Celični predelki se lahko razlikujejo po morfologiji. Mitohondriji znotraj evkariontskih celic, na katere se bomo osredotočili v tem delu, so lahko razvejani ali pa se med seboj dotikajo. Končni cilj te diplomske naloge je klasifikacija morfologije mitohondrijev. Ker je iz surovih podatkov o obliki težko pridobiti predstavitev oblike, ki bi dobro opisala njeno morfologijo, smo se obrnili k abstrakciji oblik. Abstrakcija obliko opiše z majhnim številom geometrijskih primitivov. Ocenili smo tri metode abstrakcije oblik s pomočjo globokega učenja. Te se razlikujejo po tipu vhoda, načinu ocenjevanja kvalitete abstrakcije in načinu napovedi števila primitivov. Z modifikacijo najboljše metode smo dosegli dobro kvaliteto abstrakcije. Nato smo opravili klasifikacijo morfologije na podlagi razdalje med vektorji parametrov abstrakcij. Klasifikacija ni bila zadovoljiva. Tudi na razsevnem diagramu, ki smo ga pridobili z vložitvijo razdalj, je bilo razvidno, da razdalje slabo ločujejo mitohondrije z različno morfologijo. Po močnejših metodah strojnega učenja pa nismo mogli poseči zaradi pomanjkanja mitohondrijev z označeno morfologijo.
Language:
Slovenian
Keywords:
celični predelki
,
mitohondriji
,
volumetrični podatki
,
abstrakcija oblik
,
konvolucijske nevronske mreže
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2023
PID:
20.500.12556/RUL-144826
COBISS.SI-ID:
148016643
Publication date in RUL:
15.03.2023
Views:
1065
Downloads:
125
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ENOVA, KLEMEN JAN, 2023,
Abstrakcija oblik celičnih predelkov s pomočjo globokega učenja
[online]. Bachelor’s thesis. [Accessed 26 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=144826
Copy citation
Share:
Secondary language
Language:
English
Title:
Deep learning for shape abstraction of cellular compartments
Abstract:
Cell compartments can vary in morphology. Mitochondria within eukaryotic cells, the focus of this thesis, can be branched or touch each other. Our objective is the classification of mitochondrial morphology. Since it is difficult to obtain a representation of the raw shape that would describe its morphology well, we turned to shape abstraction. Abstraction describes a shape with a small set of geometric primitives. We evaluated three shape abstraction methods that utilize deep learning. These differ in the type of input, the method of evaluating abstraction quality and in how the number of primitives is predicted. By modifying the best performing method, we achieved good abstraction quality. We then performed morphology classification based on the distance between vectors of abstraction parameters. The classification was not satisfactory. We also showed that these distances poorly separate mitochondria with different morphologies by embedding the distances and plotting the embeddings on a scatter plot. We were unable to perform classification with more powerful machine learning methods due to a lack of mitochondria with labelled morphology.
Keywords:
cell compartments
,
mitochondria
,
volumetric data
,
shape abstraction
,
convolutional neural networks
Similar documents
Similar works from RUL:
Modeliranje 3D struktur interakcij med proteini in RNA
Modeliranje interakcij protein-RNA z uporabo globokih konvolucijskih nevronskih mrež nad grafi
Sledenje objektov s segmentacijo in napovedovanjem globinskih barvnih slik
Izboljšava kvalitete zajetega slikovnega gradiva s konvolucijskimi nevronskimi mrežami
Upravljanje kvadrokopterja z gestami
Similar works from other Slovenian collections:
No similar works found
Back