izpis_h1_title_alt

Lokalizacija jezikovnih omrežij na podlagi strukturnih slik in mirovne funkcijske povezanosti možganov : magistrsko delo
ID Dvoršak, Lea (Author), ID Repovš, Grega (Mentor) More about this mentor... This link opens in a new window, ID Gosar, David (Comentor)

.pdfPDF - Presentation file, Download (2,50 MB)
MD5: EF692358F086F7A31FC6BBAFED64F548

Abstract
Pri načrtovanju nevrokirurških posegov je opredelitev možganski področji vključenih v govor in jezik izjemnega pomena. Nekatere osebe zaradi intelektualne manjzmožnosti ali drugih nevrorazvojnih razlogov ne zmorejo sodelovati pri standardnih postopkih lokalizacije jezika. Obenem je v tej skupini oseb verjetnost za pojav neobičajne razporeditve možganskih področij, ki podpirajo govor in jezik, bistveno večja. Zaradi potrebe po prepoznavanju lateralizacije jezika pri teh osebah smo v magistrski nalogi preučili, ali je možno iz strukturnih slik možganov ter funkcijske povezanosti možganskih področij v stanju mirovanja, prepoznati posameznikovo dominantno možgansko poloblo za govor. Za izvedbo naloge smo uporabili javno dostopne podatke zdravih posameznikov (N = 962) iz Projekta človeški konektom, starih med 22 in 36 let. Vsak udeleženec se je udeležil dveh snemanj s funkcijsko magnetno resonanco v različnih dneh, v okviru katerih so bile zajete strukturne slike možganov, funkcijske slike med mirovanjem ter funkcijske slike med izvedbo kognitivnih nalog, med drugim tudi med izvedbo jezikovne naloge, ki je vsebovala kratke slušne zgodbe, ki jim je sledilo vprašanje prisilne izbire z dvema alternativama. Matriko funkcijske povezanosti v mirovanju smo analizirali z merami teorije grafov. Posamezno strukturno mero smo povprečili znotraj vsake možganske funkcijske parcele. Strukturne in omrežne mere so predstavljale vhodne spremenljivke strojnega učenja, na podlagi katerih se je algoritem učil prepoznati lateralizacijo jezika, ki smo jo predhodno za vsakega udeleženca določili sami, na podlagi aktivacij ob izvedbi jezikovne naloge. Na tak način smo pridobili več napovednih modelov lateralizacije jezika. Zanesljivost napovedi smo proučili na ločenem vzorcu. Rezultate smo dopolnili z eksploratorno analizo, v kateri smo poskusili z izbiro najbolj relevantnih spremenljivk povečati napovedno moč modelov. Napovedni modeli atipične in desne lateralizacije jezika so na testnem vzorcu izkazali slabo napovedno moč saj so izkazali nizko pravilnost pri prepoznavi oseb z atipično oziroma desno lateralizacijo jezika. Kot bolj obetavni so se izkazali modeli, ki temeljijo na omrežnih merah in modeli, ki so osnovani na jezikovnem omrežju. Oblikovani napovedni modeli zaradi premajhne napovedne moči niso primerni za klinično uporabo. Naše ugotovitve je smiselno upoštevati zlasti kot smernice za nadaljnje raziskovanje.

Language:Slovenian
Keywords:lateralizacija jezika, možgani, funkcijska povezanost, mirovno stanje, nevronske mreže
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FF - Faculty of Arts
Place of publishing:Ljubljana
Publisher:[L. Dvoršak]
Year:2023
Number of pages:81 str.
PID:20.500.12556/RUL-144782 This link opens in a new window
UDC:616.8:612.82(043.2)
COBISS.SI-ID:146597123 This link opens in a new window
Publication date in RUL:12.03.2023
Views:648
Downloads:1486
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Localization of language using structural images and resting state brain functional connectivety
Abstract:
When planning neurosurgical interventions, identifying the brain areas involved in speech and language is of paramount importance. Some people are unable to participate in standard language localisation procedures due to intellectual disability or other neurodevelopmental reasons. This group of people is most at risk to have an abnormal distribution of the brain areas supporting speech and language. Due to the need to identify language lateralisation in these subjects, the thesis investigated whether it is possible to identify the individual's dominant hemisphere for speech from structural brain images and the functional connectivity of brain regions at rest. We used open access data from healthy individuals (N = 962) from the Human Connectome Project aged between 22 and 36 years. Each participant attended two functional magnetic resonance imaging scanning on different days, during which structural brain images, rasting state functional images and task based functional images were captured, including during performance of a language task involving short auditory stories followed by a forced-choice question with two alternatives. The resting-state functional connectivity matrix was analysed using graph theory measures. We averaged each structural measure within each brain parcel. The structural and network measures represented the machine learning input variables, which were used to teach the algorithm to identify the language lateralization, which we had previously determined for each participant based on brain activations during the language task. In this way, we obtained several predictive models of language lateralisation. We examined the reliability of the predictions on a separate sample. We complemented the results with an exploratory analysis in which we tried to increase the predictive power of the models by selecting the most relevant variables. Predictive models of atypical and right language lateralisation showed poor predictive power on the test sample as they showed low accuracy in identifying people with atypical and right language lateralisation. Models based on network measures and models based on the language network proved to be more promising. The predictive models developed are not suitable for clinical use due to their lack of predictive power. In particular, our findings should be considered as guidelines for further research.

Keywords:language lateralization, brain, functional connectivity, resting state, neural networks

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back