izpis_h1_title_alt

Uporaba tenzorjev v hierarhični Tuckerjevi obliki : magistrsko delo
ID Gabrijelčič, Julita (Author), ID Plestenjak, Bor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,35 MB)
MD5: 5D214ABE55B10421512E92AD6EEB7764

Abstract
Pri reševanju večdimenzionalnih sistemov linearnih enačb v obliki tenzorjev se srečamo s problemom eksponentnega naraščanja prostorske zahtevnosti s številom smeri tenzorja. V magistrskem delu se bomo osredotočili na tenzorje, za katere obstaja aproksimacija s tenzorjem nizkega ranga. Kot primer si bomo ogledali parametrične sisteme linearnih enačb, katerih dobro aproksimabilnost bomo tudi dokazali. Obravnavali bomo hierarhični Tuckerjev razcep tenzorja, ki omogoča shranjevanje tenzorja s prostorsko zahtevnostjo linearno v številu njegovih smeri. Razcep temelji na singularnem razcepu višjega reda in hierarhično obravnava posamezne skupine smeri tenzorja. Ogledali si bomo uporabo operacij, potrebnih pri aproksimaciji in iskanju iterativnih rešitev tenzorskega problema v hierarhični Tuckerjevi obliki. Predstavili bomo nekaj primerov njegove uporabe, nekatere med njimi bomo tudi empirično primerjali z nekaterimi znanimi metodami za reševanje.

Language:Slovenian
Keywords:tenzor, hierarhični Tuckerjev razcep, sistemi linearnih enačb, singularni razcep višjega reda
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-144573 This link opens in a new window
COBISS.SI-ID:143438339 This link opens in a new window
Publication date in RUL:02.03.2023
Views:638
Downloads:45
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Hierarchical Tucker decomposition and its application
Abstract:
The biggest problem when solving multidimensional linear systems in a tensor form is their exponential growth. This master thesis focuses on tensors which can be approximated by a low rank tensor. As an example we give parametric linear systems. A proof for their good approximation is provided. We present hierarchical Tucker decomposition of a tensor. It is based on higher order singular value decomposition and has space complexity linear in the order of tensor. We discuss basic operations on tensors in hierarchical Tucker decomposition, used when truncating tensors and finding iterative solution of a problem. Some examples of application of the decomposition are given, some of which are compared to known methods for such problems.

Keywords:tensor, hierarchical Tucker decomposition, linear system, higher-order singular value decomposition

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back