izpis_h1_title_alt

ZASNOVA IN IZVEDBA UNIVERZALNEGA VISOKOFREKVENČNEGA MERILNEGA INSTRUMENTA"
ID Blatnik, Aljaž (Author), ID Vidmar, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (12,49 MB)
MD5: AEDEDAD3732E107AE4BD9D4597897096

Abstract
Izvedba kakovostnega spektralnega analizatorja s sledilnim izvorom, ki kot rezultat meritve podaja natančen oris razmer na njegovem vhodu, ostaja nespremenjena že zadnjih 50 let. Napredki pri izdelavi polprevodnikov in integriranih vezji omogočajo kompaktnejšo vgradnjo, kompleksnejšo obdelavo in nižjo ceno končne naprave. Najnovejša tehnologija sicer odpira pot povsem digitalni obdelavi visokofrekvenčnega signala, a najprestižnejši instrumenti uglednih proizvajalcev še vedno posegajo po precej dražji in razvojno kompleksnejši analogni različici, idejno enaki tisti izpred pol stoletja. Rezultatu povsem analogne obdelave signala lahko z gotovostjo zaupamo, saj do napak pride kvečjemu zaradi naše nepravilne uporabe (prevelika vhodna moč signala, neustrezno napajanje analognega vezja). Obdelavo opravlja kopica namenskih vezji, ki merjeni signal ustrezno preoblikuje in obdela. Še najbolj se zatakne pri izdelavi zelo ozkih frekvenčnih sit za doseganje boljše selektivnosti, saj so ta precej lažje izvedljiva v digitalni domeni, kar premami tudi resnejše proizvajalce. Žal so digitalne izvedbe pogosto izvor zahrbtnih napak, ki proizvedejo neverodostojen rezultat meritve, te pa je zelo težko odkriti, še težje popraviti, saj je programska oprema instrumentov zaščitena z vrsto šifrirnih mehanizmov. Večina sodobnih spektralnih analizatorjev s sledilnim izvorom glavnini inženirjev še vedno ni dosegljiva, težko si jo privoščijo že najimenitnejše raziskovalne inštitucije. Proizvajalci so k nižanju cen merilnih naprav pristopili z zamenjavo najdražjih namenskih delov za cenejše široko-potrošne gradnike, predvsem pa s preskokom v digitalno domeno zelo zgodaj v analogni verigi obdelave, ter izvedbo vseh pasovno nastavljivih sit v namenskih DSP rutinah. Sicer znatna pocenitev inštrumenta prinese svoje omejitve. Analogno-digitalni pretvornik je omejen z dinamičnim območjem, njegova frekvenca vzorčenja pa določa najširše sito, ki narekuje najvišjo hitrost frekvenčnega preleta. Meritev prenosne funkcije sit z visoko kvaliteto ali opazovanje hitrih signalov avionike je s takšnimi napravami skoraj nemogoče opravilo. To delo predstavlja inovativen pristop k načrtovanju in izgradnji spektralnega analizatorja s sledilnim izvorom za območje med 100 kHz in 4 GHz, s povsem analogno obdelavo signala, brez uporabe dragih namenskih gradnikov in s postopki izdelave, ki so lahko ponovljivi v domači delavnici. Zaradi načina zasnove je končna cena izdelka precej nižja od profesionalnih inačic, ključni gradniki, ki jih z neprimernim rokovanjem lahko uničimo, pa so enostavno zamenljivi. Spektralni analizator deluje kot sprejemnik z večkratnim mešanjem vhodnega signala na različne medfrekvence, pri čemer lokalni oscilator prvega mešalnika opravlja frekvenčni prelet, vsi ostali oscilatorji pa se nahajajo na konstantnih frekvencah. Disertacija predstavlja način izvedbe širokopasovnega frekvenčnega preleta med 4,3 GHz in 8,3 GHz z uporabo več ozkopasovnih oscilatorjev in preklapljanjem med njimi. S tem zagotavlja kakovosten signal prvega lokalnega oscilatorja z nizkim faznim šumom brez neželenih produktov delovanja ulomkove fazno sklenjene zanke. Moteč upad izhodne moči z višanjem frekvence odpravi z inovativno uporabo fotovolatičnega modula za ustvarjanje prednapetosti vrat namenskega nizko-šumnega ojačevalnika s pozitivnim naklonom ojačanja. Vsa medfrekvenčna sita tega dela so izvedena analogno. Votlinsko sito na prvi medfrekvenci 4,3 GHz iz široko-dostopnih aluminijastih profilov, LC sita na nižjih frekvencah pa s spreminjanjem kvalitete resonančnega vezja in s tem elektronsko izbiro pasovne širine med 3 MHz in 30 kHz. Še ožje sito je načrtovano z uporabo piezoelektričnih resonatorjev za 10 MHz, kar omogoča izvedbo najožjega področja vse do 1 kHz. Sledilni izvor poleg želenega izhodnega visokofrekvenčnega signala vključuje tudi podvojeno strukturo mešalnikov in lokalnih oscilatorjev, ki zagotavljajo referenčni signal faznemu detektorju, s tem pa razširitev nabora različnih meritev končne naprave. Tudi ta obdelava je izvedena povsem analogno, kar omogoča neodvisno spreminjanje frekvenc vseh lokalnih oscilatorjev in ohranjanje podatkov umerjanja v primeru izgube napajanja. S koraki analogne obdelave signala je mogoče neodvisno upravljati preko preprostih znakovnih ukazov, ki jih razume programska oprema mikrokrmilnika. Opis vseh sestavnih blokov je natančno razčlenjen, z navedbo zahtev in omejitev načrtovanja. Prikazane so podrobne električne sheme vseh vezji in ključne meritve parametrov, ki krojijo končne zmogljivosti instrumenta. Poseben poudarek je namenjen faznemu šumu prvega lokalnega oscilatorja, ki omejuje uporabnost najožjih pasovnih sit v medfrekvenčni obdelavi signala. Ustvarjanje frekvenčnega preleta je izvedeno z zaporedno vezavo dveh fazno sklenjenih zank s pripadajočimi nizko-šumnimi ozkopasovnimi oscilatorji, pri čemer v ulomkovem načinu deluje prvi oscilator verige, njegov izhod pa je uporabljen za takt celoštevilskega načina faznega detektorja drugega oscilatorja. Z izbiro integriranega vezja STuW81300 je na njegovem mestu na voljo 128 ozkopasovnih oscilatorjev, med katerimi preklaplja ustrezna programska koda izbranega mikrokrmilnika. Vzrok popačenja merjenega signala bo v največji meri odvisen od izbire prvega mešalnika analogne verige. Uporaba komercialno dostopnega gradnika na mestu mešalnika se zaradi nizke cene in enostavne vgradnje potrdi kot smiselna izbira. Ker gre za občutljiv gradnik, ki omejuje vhodno moč instrumenta, so podane natančne meritve presečne točke intermodulacijskega popačenja tretjega reda in točke zasičenja za celotno načrtovano frekvenčno področje. Nadalje je predstavljena nova izvedba pasovnoprepustnega sita z elektronsko izbiro njegove širine. Nadzorovanje kvalitete LC resonatorja, s tem pa širine prepustnega pasu, je izvedeno s PIN diodami, pri čimer je spreminjanje kapacitivnosti diode med preklopom zadosti majhno, da ne povzroči premika osrednje frekvence nihajnega kroga. Uglaševanje takšnega vezja je precej enostavnejše od izvedb v industrijskih inačicah, kar poenostavlja rokovanje s končnim instrumentom in ne zahteva dodatnega umerjanja med samim delovanjem naprave. Digitalno vzorčenje analognega signala po končni obdelavi vrši mikrokrmilnik STM32G441, ki hkrati izvaja zahtevane korake nastavljanja fazno sklenjenih zank vseh lokalnih oscilatorjev. Podatke o amplitudi in fazi merjenega signala v agregirani obliki posreduje uporabniškemu vmesniku, ki jih prikaže na interaktivnem zaslonu na dotik. Predstavljen instrument tako ostaja zvest zaupanja vredni analogni zasnovi, uporabi sodobnih nizkocenovnih gradnikov za proizvajanje signala lokalnih oscilatorjev in razširi nabor meritev s sledilnim izvorom z vpeljavo vektorskega načina merjenja.

Language:Slovenian
Keywords:Spektralni analizator, sledilni izvor, vektorski analizator vezji, fazni šum, fotovoltaični vir, HEMT.
Work type:Doctoral dissertation
Organization:FE - Faculty of Electrical Engineering
Year:2023
PID:20.500.12556/RUL-144307 This link opens in a new window
COBISS.SI-ID:141644803 This link opens in a new window
Publication date in RUL:14.02.2023
Views:594
Downloads:278
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:DESIGN AND IMPLEMENTATION OF A UNIVERSAL HIGH FREQUENCY MEASUREMENT INSTRUMENT
Abstract:
The implementation of a spectrum analyzer with a tracking generator, which as a result of the measurement gives an accurate representation of the conditions at its input, has remained mostly unchanged for the past 50 years. Advances in the manufacture of semiconductors and integrated circuits allow for more compact installation, complex processing, and a lower price of the final device. The latest technology paves the way for completely digital signal processing, but the most prestigious instruments from reputable manufacturers still resort to a much more expensive and developmentally more complex analog version, conceptually identical to those from half a century ago. We can trust the result of completely analog signal processing with certainty, since errors occur mostly due to our improper use (excessive input power, inadequate power level of the analog circuit). The processing is performed by many dedicated circuits, which appropriately transform and process the measured signal. The problem arises while making very narrow frequency filters to achieve better selectivity, as these are much easier to implement in the digital domain, so much so that it tempts even more serious manufacturers. Unfortunately, digital implementations are often the source of insidious errors that produce an unreliable measurement result, which are very difficult to detect and even more difficult to correct, since the instrument software is protected by heavy encryption mechanisms. Most modern spectrum analyzers with a tracking generator are still beyond the reach of the majority of engineers, as even the finest research institutions can hardly afford them. Manufacturers approached the reduction of the price of measuring devices by replacing the most expensive dedicated parts for cheaper widely used building blocks, and above all by switching to the digital domain very early in the analog signal path (implementing all band-pass filters in dedicated DSP routines). This significant cheapening of the instrument brings its limitations. An analog-to-digital converter is limited by its dynamic range and its sampling frequency defines the widest filter range that dictates the highest rate of frequency sweep. Measuring the transfer function of high-quality filters or observing fast avionics signals is almost impossible with such devices. This work presents an innovative approach to the design and construction of a spectrum analyzer with tracking generator, working between 100 kHz and 4 GHz, and fully analog signal processing, without the use of expensive dedicated building blocks, and with manufacturing processes that can be replicated in the home workshop. Due to the way of design, the final price of the product is much lower than the professional versions, and the key components, which can be destroyed by improper handling, are easily replaceable. The spectrum analyzer acts as a receiver by repeatedly mixing the input signal to different intermediate frequencies, whereby the local oscillator of the first mixer performs a frequency sweep, while all other oscillators are set to constant frequencies. The dissertation presents a novel method of performing wide-band frequency sweep between 4.3 GHz and 8.3 GHz using several narrow-band oscillators and switching between them. It thereby provides a high-quality signal for the first local oscillator with low phase noise and without unwanted products of fractional phase-locked loop operation. The drop in output power with increasing frequency is eliminated by the innovative use of a photovoltaic module to bias the gate of a dedicated low-noise amplifier. All filters are made analog. Cavity filter at the first intermediate frequency of 4.3 GHz is constructed with wide-access aluminium profiles, and LC filter at lower frequencies by changing the quality of the resonant circuit and thus electronically selecting the bandwidth between 3 MHz and 30 kHz. An even narrower filter is designed using piezoelectric resonators, which enables the implementation of the narrowest bandwidth down to 1 kHz. In addition to the desired high-frequency output signal, the tracking generator also includes a duplicate structure of mixers and local oscillators that provide a reference signal to the phase detector, thereby expanding the range of various measurements of the end device. This processing is also completely analog, which allows for independent changing of the frequencies of all local oscillators and preservation of calibration data in case of power loss. Signal path can be independently controlled via simple character commands understood by the microcontroller software. All building blocks are thoroughly described, together with all of the requirements and constraints. Detailed electrical diagrams of all circuits and key parameter measurements that shape the instrument's end capabilities are shown. Special emphasis is given to the phase noise of the first local oscillator, which limits the usefulness of the narrowest bandpass filters. The generation of the frequency sweep is performed by sequentially connecting two phase-locked loops with the corresponding low-noise narrowband oscillators, whereby the first oscillator of the chain operates in fractional mode, and its output is used to clock the phase detector of the second oscillator in integer mode. By choosing the STuW81300 integrated circuit, 128 narrowband oscillators, managed by a microcontroller, are available. The choice of the first mixer in the analog chain will have a significant impact on the measured signal's distortion. The use of a commercially available building block in place of the mixer proves to be sensible due to its low cost and easy installation. Because it is a sensitive component that limits the input power of the instrument, accurate measurements of the third-order intermodulation distortion intersection and saturation points are given for the entire frequency range. Furthermore, a new version of the bandpass filter with electronic selection of its width is presented. Controlling the quality of the LC resonator, and thus the width of the passband, is performed via PIN diodes, whereby the change in diode capacitance during switching is small enough to not cause a shift in the central frequency of the oscillating circuit. Tuning is much simpler than in case of the industrial equivalents, which simplifies the handling of the instrument and does not require additional calibration during the operation of the device itself. Digital sampling of the analog signal after final processing is performed by the STM32G441 microcontroller, which simultaneously performs the required steps in setting the phase-locked loops of all local oscillators. It sends aggregated data of the detected signal's amplitude and phase to the user interface, which are shown on an interactive touch screen. The presented instrument stays true to the proven analog design, employs modern, reasonably priced building blocks for the generation of local oscillator signals, and increases the scope of tracking generator measurements by adding a vector measurement mode.

Keywords:Spectrum analyzer, tracking generator, vector analyzer, phase noise, photovoltaic source, HEMT.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back