izpis_h1_title_alt

Napovedovanje borznega indeksa S&P 500 z rekurenčnimi nevronskimi mrežami
ID FERKO, ALJAŽ (Author), ID Robnik Šikonja, Marko (Mentor) More about this mentor... This link opens in a new window, ID Jezernik Širca, Matjaž (Comentor), ID Kostrevc, Jakob (Comentor)

.pdfPDF - Presentation file, Download (10,65 MB)
MD5: 94A0B884E0E00F4EE43249E1FACEF968

Abstract
Diplomska naloga se ukvarja z napovedovanjem borznega indeksa S&P 500. Ta je pogosto uporabljena mera za stanje ameriškega gospodarstva, saj je sestavljena iz širokega spektra podjetij. Spremembe indeksa je možno opazovati na različnih intervalih. Odločili smo se izdelati modele za napovedi indeksa in njegove volatilnosti na urnem intervalu in na dnevnem intervalu. Modeli so bili učeni in preizkušeni na zgodovinskih podatkih. Ker pa je indeks časovna vrsta, smo preizkusili rekurenčne nevronske mreže in jih primerjali z uspešnim modelom XGBoost. Preizkusili smo celice RNN, LSTM in GRU. Pri napovedih na urnem nivoju je bil najboljši model s celicami GRU z relativno povprečno napako 0,221 in napako 0,095 pri napovedih volatilnosti. Za napovedi dnevnih razlik smo najprej uporabili dekompozicijo časovne vrste, da smo iz podatkov odstranili trend. Tako so se starejši podatki bolje posplošili na najnovejše. Izdelali smo model, sestavljen iz LSTM celic, ki smo jim dodali rekurenčni osip in normalizacijo plasti. Tako smo dobili model, ki dosega relativno povprečno napako 0,6104.

Language:Slovenian
Keywords:strojno učenje, časovne vrste, indeks S&P 500, SPX, XGBoost, mreža LSTM, mreža GRU, rekurenčne nevronske mreže, sekvenčni podatki, dekompozicija časovne vrste
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-144283 This link opens in a new window
COBISS.SI-ID:141205251 This link opens in a new window
Publication date in RUL:09.02.2023
Views:830
Downloads:138
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Prediction of S&P 500 stock market index using recurrent neural networks
Abstract:
The thesis deals with forecasting the S&P 500 stock market index. This is a commonly used metric for the state of US economy, as it consists of many companies. Index changes can be observed at different intervals. We decided to create models for forecasting the index and its volatility on a hourly interval and on a daily interval. The models were trained and tested on historical data. Since the index is a time series, decided to tested recurrent neural networks and compared them with sucessful XGBoost algorithm. We tested RNN, LSTM and GRU cells. For hourly forecasts, the GRU cell model was the best with a relative mean error of 0.221 and an error of 0.095 in the volatility forecast. For the daily difference predictions, we first used time series decomposition to remove the trend from the data so that older data generalized better. We created a model consisting of LSTM cells to which we added recurrent dropout and layer normalization. Thus, we obtained a model that achieves a relative mean error of 0.6104 in the predicted differences.

Keywords:machine learning, time series, S&P 500 indexs, SPX, XGBoost, LSTM network, GRU network, recurrent neural networks, sequential data, time series decomposition

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back