izpis_h1_title_alt

Morikavov problem : magistrsko delo
ID Štrovs, Nina (Author), ID Šivic, Klemen (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (718,55 KB)
MD5: 7707A4B1058F49F6F3CA14BE1A23445A

Abstract
Krožnici se dotikata z zunanje strani in imata skupno tangento, ki ne poteka skozi njuno dotikališče. V vmesni prostor včrtamo kvadrat tako, da se dotika obeh krožnic in premice. Glavno vprašanje je, kolikšna je dolžina stranice najmanjšega možnega kvadrata. Zapisani problem, ki izvira z Japonske, se imenuje Morikavov problem. V delu so predstavljeni vsi možni položaji kvadrata, razlogi, da najmanjši kvadrat sploh obstaja, in geometrijske utemeljitve, v katerem položaju dobimo iskani kvadrat. Zapisana je funkcija, katere najmanjša vrednost na določenem intervalu je ravno dolžina najkrajše stranice. Število, pri katerem je dosežen minimum, je tudi ničla polinoma 10. stopnje. Na koncu je s pomočjo Galoisove teorije dokazano, zakaj zapisani polinom 10. stopnje ni rešljiv z radikali in zakaj dolžina stranice najmanjšega možnega kvadrata kot funkcija polmera ni radikalska funkcija.

Language:Slovenian
Keywords:Morikavov problem, krožnica, kvadrat, premica, konfiguracija, Galoisova teorija, radikalska funkcija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-144181 This link opens in a new window
UDC:514
COBISS.SI-ID:138143235 This link opens in a new window
Publication date in RUL:03.02.2023
Views:845
Downloads:138
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Morikawa's problem
Abstract:
Two circles are externally tangent and have a common external tangent. A square is placed in the area between the two circles and the line in such a way that it is touching all three objects. The main question is what the length of the side of the minimal square is. The described problem originates in Japan and is called Morikawa's problem. This master's thesis presents all the possible positions of the square, why the minimal square even exists, and geometric arguments for whether or not the minimal square can exist in a given position. An explicit formula for a function whose minimum value on a certain interval is exactly the length of the square's shortest side is also given. This length can be expressed in terms of a root of a certain polynomial of degree 10. Finally, with the help of Galois theory, we proved that the polynomial of degree 10 cannot be solved by radicals and why that is, as well as why the length of the minimal square's side as a function of radius is not a radical function.

Keywords:Morikawa's problem, circle, square, line, configuration, Galois theory, radical function

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back