izpis_h1_title_alt

Avtomatski izbor artiklov za personaliziran e-katalog
ID MACUR, LEON (Author), ID Možina, Martin (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (279,62 KB)
MD5: EA8797C111DAE0A78F225E9234D17064

Abstract
V diplomski nalogi smo analizirali in implementirali priporočilni sistem za personaliziran elektronski katalog. Opisali smo uporabljena orodja in delovanje naših programov za transformacijo podatkov in izdelavo e-kataloga. Zapisali smo tudi prednosti, ki jih ponujajo e-katalogi pred tradicionalnimi in ugotovitve, ki so jih zapisali raziskovalci za podoben problem. Za izdelavo e-kataloga smo najprej opisali, kje smo pridobili nabor podatkov, kako smo ga spremenili in omejili za naše potrebe. V nadaljevanju smo opisali namen in implementacijo uporabljenih metod ter rešitve težav, ki se pojavijo pri izdelavi e-katalogov. Na koncu smo napovedi metod združili in prikazali uspešnost izdelanega priporočilnega sistema. Rezultati našega personaliziranega e-kataloga prikazujejo informacije o natančnosti, priklicu in F-oceni. Pri tem nas je zanimal predvsem podatek o priklicu, saj nam pove, koliko izdelkov moramo priporočiti, da zadovoljimo vse interese uporabnikov. Poleg rezultatov priporočilnega sistema smo izvedli teste in prikazali učinkovitost vsake metode.

Language:Slovenian
Keywords:priporočilni sistem, skupinsko filtriranje, gradientno pospeševanje, e-katalog, napoved izdelkov
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-144045 This link opens in a new window
COBISS.SI-ID:139878915 This link opens in a new window
Publication date in RUL:27.01.2023
Views:672
Downloads:84
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Automatic selection of products for a personalized e-catalogue
Abstract:
In the diploma thesis, we analyzed and implemented a recommendation system for personalized electronic catalogue. We have described the tools used and the operation of our programs for data transformation and e-catalogue creation. We also wrote down the advantages offered by e-catalogues over traditional ones and the findings written by researchers on a similar problem. To create the e-catalogue, we first described where we obtained the data set and how we modified and limited it for our needs. Next, we described the purpose and implementation of the methods used, as well as solutions to problems that arise when creating e-catalogues. At the end, we combined the predictions of the methods and showed the efficiency of the created recommendation system. Our personalized e-catalogue results show precision, recall and F-score information. We were particularly interested in recall data, as it tells us how many products we need to recommend in order to satisfy all user interests. In addition to the results of the recommender system, we implemented tests and demonstrated the effectiveness of each method.

Keywords:recommendation system, collaborative filtering, gradient boosting, e-catalogue, products prediction

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back