izpis_h1_title_alt

Učinki porotvornega nistatina na lipidne mehurčke celičnih velikosti : doktorska disertacija
ID Kristanc, Luka (Author), ID Božič, Bojan (Mentor) More about this mentor... This link opens in a new window, ID Sollner Dolenc, Marija (Comentor)

.pdfPDF - Presentation file, Download (13,62 MB)
MD5: 4E3AF5032E4E011DC8D188A158C987A3

Abstract
Nistatin spada v skupino makrolidnih polienskih antimikotikov. Podobno kot amfotericin B ima širok spekter antimikotičnega delovanja, vendar se navkljub velikemu potencialu uporablja skoraj izključno topikalno, saj je ob sistemski uporabi nefrotoksičen.Biološka aktivnost nistatina je povezana predvsem z njegovo zmožnostjo tvorbe transmembranskih kanalčkov v plazemskih membranah odzivnih celic, ki prepuščajo različne ione in celo manjše molekule, kar na koncu privede do porušenja elektrokemijskih gradientov ter nazadnje do celične smrti. Klinična uporabnost polienskih antimikotikov temelji na dejstvu, da imajo precej izrazitejši učinek na celice gliv, katerih membrane vsebujejo kot glavni sterol ergosterol, kot pa na človeške celice, za katere je značilen holesterol. Mehanizem delovanja polienov na ravni membrane še ni v celoti pojasnjen, pogledi raziskovalcev pa se razlikujejo zlasti glede pomena in načina vplivanja sterolov. Temeljni cilj raziskav v okviru disertacije je bila torej dopolnitev znanja o mehanizmu delovanja nistatina na ravni celične membrane, kar predstavlja osnovo za njegovo učinkovitejšo uporabo pri zdravljenju okužb ter zmanjševanje toksičnosti za človeške celice. Pridobljeno znanje o porotvornem delovanju nistatina pomeni tudi prispevek k razvoju reguliranega prenosa zdravilnih snovi v celice. Membransko delovanje nistatina smo sprva preučevali na fosfolipidnih mehurčkih celičnih velikosti iz 1-palmitoil-2-oleil-glicero-3-fosfoholina (POPC), pripravljenih po elektroformacijski metodi. V ta namen smo z uporabo mikromanipulacijskega sistema in mikropipet prenašali mehurčke, napolnjene s saharozno raztopino, v izomolarno glukozno raztopino z dodanim nistatinom v koncentracijah od 10 do 900 μmol/L ter jih opazovali pod faznokontrastnim mikroskopom. Uporabljena metodologija, ki predstavlja novost na področju preučevanja polienov, je omogočila spremljanje oblikovnih sprememb membran in osmotskih pojavov na posamičnih mehurčkih. Eksperimenti z brezsterolnimi mehurčki so razkrili tri osnovne vzorce odzivov mehurčkov, ki so prehajali en v drugega ob višanju koncentracij nistatina v merilni raztopini. Pri nižjih koncentracijah nistatina (150–250 umol/L) je prišlo do sprememb oblik mehurčkov ter do nastanka različno oblikovanih izrastkov z značilnimi časovnimi vzorci spreminjanja oblik in dolžin. Slednje je posledica spreminjanja ravnovesne razlike v površinah med zunanjim in notranjim fosfolipidnim monoslojem (dA0), zato smo z natančnim spremljanjem omenjenih časovnih vzorcev lahko pojasnili zaporedje korakov pri vgrajevanju nistatina v membrane. V območju srednje visokih koncentracij nistatina (250–400 umol/L) so se 2 pojavljale kratkotrajne napetostne pore ter s tem povezano bledenje mehurčkov, ki je bilo vse hitrejše z višanjem koncentracij nistatina. Pri najvišjih koncentracijah (> 400 umol/L) pa je prišlo do bolj obsežnih in stabilnejših napetostnih por, to je počasnih in hitrih pokov. Pojav napetostnih por smo uspeli razložiti z osmotskimi procesi in dvigom lateralne napetosti membrane zaradi tvorbe transmembranskih nistatinskih kanalčkov z večjo prepustnostjo za glukozo kot za saharozo. Zviševanje površinske gostote nistatinskih kanalčkov pospeši osmotske procese, kar vodi v čedalje večjo obstojnost napetostnih por ter na koncu povzroči eksplozije. S teoretičnim modelom smo lahko zadovoljivo opisali posamezne tipe osmotskih pojavov ter ocenili, kako se spreminja površinska gostota nistatinskih kanalčkov v membranah v odvisnosti od koncentracij nistatina v merilni raztopini. Dokazali smo torej, da je porotvorno delovanje nistatina možno tudi v brezsterolnih membranah, glede česar doslej ni bilo konsenza. Nato smo v membrane dodajali holesterol in ergosterol v različnih molarnih deležih. Eksperimenti s POPC-holesterolnimi mehurčki so namreč osnova za preučevanje toksičnosti nistatina za človeške celice, tisti s POPCergosterolnimi pa za preučevanje delovanja nistatina na tarčne mikrobne patogene, to je glive in tripanosomatidne kinetoplastide. Izkazalo se je, da ergosterol v membranah izrazito pospeši vgrajevanje nistatina vanje ter njegovo porotvorno delovanje, o čemer priča pomik značilnih morfoloških sekvenc in osmotskih pojavov, katerih osnovno sosledje ostane v osnovi enako, k nižjim koncentracijam. Za POPC-ergosterolne mehurčke so bile značilne tudi dolgotrajne napetostne pore, ki predstavljajo mehanizem, ki je morda pomemben tudi v in vivo pogojih. Po drugi strani je prisotnost holesterola v molarnem deležu, tipičnem za sesalske celice (45 mol%), blago zavrla delovanje nistatina. Pokazali smo tudi, da je učinkovanje nistatina v kompleksnem, nelinearnem odnosu z deležem ergosterola v membranah. Primerjave so pokazale, da ti rezultati lahko pomenijo prvo potrditev teoretično napovedanih sterolnih supermrež v primeru mehurčkov celičnih velikosti. Z uporabo teoretičnega modela smo ugotovili, da zaznanih osmotskih pojavov ni možno razložiti zgolj z vplivi sterolov na mehanske lastnosti lipidnih membran, temveč da moramo upoštevati predvsem njihove neposredne vplive na vgrajevanje in porotvorno aktivnost nistatina. Temeljne toksikološke raziskave delovanja nistatina na holesterol vsebujoče mehurčke smo dopolnili s preučevanjem učinkov nistatina na ovarijske epitelijske celice kitajskih hrčkov (celicah CHO) z uporabo faznokontrastne in fluorescenčne mikroskopije. Tudi pri celicah je prišlo do nabrekanja ter pojava napetostnih por zaradi osmotskih procesov spričo porotvorne aktivnosti nistatina. Po drugi strani pa smo pri celicah opazili tudi odzive, ki se razlikujejo od tistih pri mehurčkih. Pri nizkih koncentracijah nistatina nismo opazili nitastih izrastkov, kar smo pripisali sploščenju izvihkov notranjega monosloja, t. i. kaveol, kar bi lahko uravnotežilo vgrajevanje nistatinskih molekul v zunanji monosloj. Pri višjih koncentracijah nistatina pa so se na celičnih membranah razvili sferični izrastki (blebi), ki so se z višanjem koncentracij postopno večali in združevali, vse do pojava nabreklih celičnih oblik, imenovanih celični mehurčki, ki so pri najvišjih koncentracijah pokali. Omenjene osmotske pojave pri celicah smo primerjali s tistimi pri mehurčkih in jih opisali z dopolnjenim teoretičnim modelom. S študijami celične viabilnosti ter s prikazom razgradnje aktinskega citoskeleta, označenega z zeleno fibrilarno beljakovino, pa smo jih uspeli povezati tudi s procesom celične smrti.

Language:Slovenian
Keywords:biofizika, fosfolipidni mehurčki celičnih velikosti, prekomembranske pore, sterol, tvorba napetostne pore, osmotski pojavi
Work type:Dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FFA - Faculty of Pharmacy
Place of publishing:Ljubljana
Publisher:[L. Kristanc]
Year:2016
Number of pages:220 f.
PID:20.500.12556/RUL-143778 This link opens in a new window
UDC:577.352(043.3)
COBISS.SI-ID:288033024 This link opens in a new window
Publication date in RUL:12.01.2023
Views:1155
Downloads:51
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Effects of the pore-forming nystatin on the cell-sized lipid vesicles
Abstract:
Nystatin belongs to a group of polyene macrolide antimicotics. Although it has a wide spectrum of activity towards pathogenic fungi, similar to amphotericin B, it is used mainly topically because of its nephrotoxicity when applied systemically. The biological target for polyene action is the plasma membrane of sensitive cells, where they can form membranespanning channels, permeable to different ions and even smaller molecules, resulting in the disturbance of the cellular electrochemical gradients, and ultimately cell death. The fungal cells whose principal membrane sterol is ergosterol are much more susceptible to polyenes than cholesterol-containing human cells, which is the basis of their clinical use. The consensus regarding the mechanism of the polyene membrane activity, especially the role of sterols, has not been reached yet. Therefore, the principal intention of the doctoral research has been to bring new insights about the mode of action of nystatin at the membrane level, which could improve the efficiency of its use in different infections as well as reduce its toxicity to human cells. In addition, the knowledge about the mechanism of the nystatin poreforming activity is essential for the development of the regulated delivery of drugs into cells. Firstly, we studied the membrane activity of nystatin in vesicles with dimensions comparable to the size of an average human cell (giant unilamellar vesicles – GUVs), which were prepared from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using the electroformation method. For this purpose GUVs filled with a sucrose solution were transferred using the micromanipulation system and micropipettes into an isomolar glucose solution with nystatin concentrations of 10 umol/L to 900 umol/L, and observed using the phase contrast microscopy. This novel methodological approach enabled us to study the osmotic phenomena and morphological responses of individual GUVs exposed to nystatin. Three characteristic concentration-dependent responses of sterol-free GUVs were detected experimentally in three different, partially overlapping, nystatin concentration ranges. At low nystatin concentrations (150–250 umol/L) vesicle shape changes and various membrane formations with distinct temporal shape and length evolution patterns were observed. These patterns can be explained by the changes in the equilibrium leaflet-area difference (dA0), thereby revealing the steps of the nystatin membrane partition. The characteristic feature for the medium nystatin concentrations (250–400 umol/L) were transient tension pores associated with vesicle fading, which was intensified with increasing nystatin concentrations. At the highest nystatin concentrations (> 400 umol/L), two basic types of vesicle ruptures were encountered on the basis of the intensity of the osmotic process, i.e., the slow and fast ruptures (explosions). The occurrence of tension pores was attributed to osmotic processes leading to an increase of the lateral membrane tension as a consequence of the formaton of the transmembrane nystatin channels being more permeable to glucose compared to sucrose. As the surface density of nystatin channels increases, the tension pores become more durable (slow ruptures) and, eventually, explosions occur. Using a theoretical model, the dependency of the surface density of channels to the nystatin concentration was established and successfully correlated to different vesicle behavior. Therefore, we demonstrated that nystatin is able to form pores in the absence of sterols, which was debated untill now. Afterwards, we conducted experiments with GUVs containing cholesterol and ergosterol in different molar fractions. POPC-cholesterol GUVs namely enable the study of the toxic effects of nystatin on human cells, while POPC-ergosterol GUVs serve as model membranes for microbial fungal and trypanosomal kinetoplastid pathogens. It was shown that the nystatin partition and pore-forming activity are significantly increased in the ergosterol-containing membranes. This was demonstrated by the shift of the characteristic vesicle responses towards lower nystatin concentrations, while the basic concentrationdependent succession of phenomena was conserved. Furthermore, for POPC-ergosterol GUVs the long-lasting tension pores were characteristic and might represent an important mechanism also in in vivo conditions. In contrast, the addition of cholesterol into membranes in the molar fraction typical fot mammal cells (45 mol%) was found to be inhibitory for the nystatin action. It was also demonstrated that the nystatin activity is in a complex, nonlinear relation to the ergosterol membrane’s molar fraction. The comparison of the results to those of other studies in the field revealed that this could be the first confirmation of the existence of previously mathematically predicted sterol superlattices in the case of cell-sized vesicles. The theoretical modelling has shown that the sterol-induced changes of the osmotic phenomena could not be explained adequately on the basis of the altered membarne mechanical characteristics, and were therefore interpreted mainly by the direct influences of the sterols on the membrane partition and the channel-formation process of nystatin. The basic toxicological research of the nystatin effects on the POPC-cholesterol GUVs were complemented by the study of the responses of Chinese hamster ovary (CHO) epithelial cells to the pore-forming agent nystatin, which were investigated using phase-contrast and fluorescence microscopy. As in the case of GUVs, the pore-forming activity of nystatin induced the osmotic processes resulting in the cell swelling and in tension pores. However, certain responses of CHO cells were different compared to GUVs. Firstly, no membrane protrusions were observed at lower nystatin concentration, which can be explained by the flattening of the invaginated membrane structures, such as caveolae, thereby compensating the increase of the surface of the outer cell membrane monolayer as a result of nystatin insertion. With increasing nystatin concentrations, the formation of spherically shaped blebs, gradually growing and coalescing into “cell-vesicles”, and finally cell ruptures, were observed. These osmotic phenomena in cells were compared to those in GUVs and interpreted using an extended theoretical model. By using the cell viability studies and the demonstration of the GFP-tagged actin cytoskleton degradation we were able to link them to the process of cell death.


Projects

Funder:ARRS - Slovenian Research Agency
Project number:P1-0055
Name:Biofizika polimerov, membran, gelov, koloidov in celic

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back