Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Limits of manifolds in the Gromov-Hausdorff metric space
ID
Hegenbarth, Friedrich
(
Author
),
ID
Repovš, Dušan
(
Author
)
PDF - Presentation file,
Download
(466,14 KB)
MD5: 36463553151ADBE80C2F9CEA4D0EB524
URL - Source URL, Visit
https://link.springer.com/article/10.1007/s00009-022-02250-9
Image galllery
Abstract
We apply the Gromov-Hausdorff metric $d_G$ for characterization of certain generalized manifolds. Previously, we have proven that with respect to the metric $d_G$, generalized $n$-manifolds are limits of spaces which are obtained by gluing two topological $n$-manifolds by a controlled homotopy equivalence (the so-called 2-patch spaces). In the present paper, we consider the so-called manifold-like generalized $n$-manifolds $X^{n}$, introduced in 1966 by Mardeić and Segal, which are characterized by the existence of $\delta$-mappings $f_{\delta }$ of $X^{n}$ onto closed manifolds $M^{n}_{\delta }$, for arbitrary small $\delta >0$, i.e., there exist onto maps $f_{\delta }:X^{n}\rightarrow M^{n}_{\delta}$ such that for every $u \in M^{n}_{\delta }$, $f^{-1}_{\delta }(u)$ has diameter less than $\delta$. We prove that with respect to the metric $d_G$, manifold-like generalized $n$-manifolds $X^{n}$ are limits of topological $n$-manifolds $M^{n}_{i}$. Moreover, if topological $n$-manifolds $M^{n}_{i}$ satisfy a certain local contractibility condition ${\mathcal {M}}(\varrho, n)$, we prove that generalized $n$-manifold $X^{n}$ is resolvable.
Language:
English
Keywords:
Gromov-Hausdorff metric
,
Gromov topological moduli space
,
manifold-like generalized manifold
,
absolute neighborhood retract
,
cell-like map
,
$\delta$-map
,
structure map
,
controlled surgery sequence
,
$\varepsilon$-homotopy
,
2-patch space
,
$\varepsilon$-homotopy equivalence
,
periodic surgery spectrum $\mathbb{L}$
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Author Accepted Manuscript
Year:
2023
Number of pages:
11 str.
Numbering:
Vol. 20, iss. 1, art. 47
PID:
20.500.12556/RUL-143766
UDC:
515.14:514.7
ISSN on article:
1660-5446
DOI:
10.1007/s00009-022-02250-9
COBISS.SI-ID:
135986179
Publication date in RUL:
11.01.2023
Views:
650
Downloads:
75
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Mediterranean journal of mathematics
Shortened title:
Mediterr. j. math.
Publisher:
Springer Nature, University of Bari, Department of Mathematics
ISSN:
1660-5446
COBISS.SI-ID:
13561433
Projects
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0292
Name:
Topologija in njena uporaba
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-4031
Name:
Računalniška knjižnica za zavozlane strukture in aplikacije
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-4001
Name:
Izbrani problemi iz uporabne in računske topologije
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0278
Name:
Biološka koda vozlov - identifikacija vzorcev vozlanja v biomolekulah z uporabo umetne inteligence
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0114
Name:
Algebrajski odtisi geometrijskih značilnosti v homologiji
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0083
Name:
Forsing, fuzija in kombinatorika odprtih pokritij
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back