Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Mixed order elliptic problems driven by a singularity, a Choquard type term and a discontinuous power nonlinearity with critical variable exponents
ID
Zuo, Jiabin
(
Author
),
ID
Choudhuri, Debajyoti
(
Author
),
ID
Repovš, Dušan
(
Author
)
PDF - Presentation file,
Download
(390,17 KB)
MD5: 6DBA00D01C4856B36E704C002B78FED8
URL - Source URL, Visit
https://link.springer.com/article/10.1007/s13540-022-00105-4
Image galllery
Abstract
We prove the existence of solutions for the following critical Choquard type problem with a variable-order fractional Laplacian and a variable singular exponent $\begin{aligned} \begin{aligned} a(-\varDelta )^{s(\cdot )}u+b(-\varDelta )u&=\lambda |u|^{-\gamma (x)-1}u+\left( \int _{\varOmega }\frac{F(y,u(y))}{|x-y| ^{\mu (x,y)}}dy\right) f(x,u)\\&+\eta H(u-\alpha )|u|^{r(x)-2}u,~\text {in}~\varOmega ,\\ u&=0,~\text {in}~{\mathbb {R}}^N\setminus \varOmega, \end{aligned} \end{aligned}$ where $a(-\varDelta )^{s(\cdot )}+b(-\varDelta )$ is a mixed operator with variable order $s(\cdot ):{\mathbb {R}}^{2N}\rightarrow (0,1)$, $a, b\ge 0$ with $a+b>0$, $H$ is the Heaviside function (i.e., $H(t)=0$ if $t\le 0$, $H(t)=1$ if $t>0$), $\varOmega \subset {\mathbb {R}}^N$ is a bounded domain, $N\ge 2$, $\lambda >0$, $0<\gamma ^{-}=\underset{x\in \bar{\varOmega }}{\inf }\{\gamma (x)\}\le \gamma (x)\le \gamma ^+ =\underset{x\in \bar{\varOmega }}{\sup }\{\gamma (x)\}<1$, $\mu$ is a continuous variable parameter, and $F$ is the primitive function of a suitable $f$. The variable exponent $r(x)$ can be equal to the critical exponent $2_{s}^*(x)=\frac{2N}{N-2\bar{s}(x)}$ with $\bar{s}(x)=s(x,x)$ for some $x \in \bar{\varOmega }$, and $\eta$ is a positive parameter. We also show that as $\alpha \rightarrow 0^+$, the corresponding solution converges to a solution for the above problem with $\alpha =0$.
Language:
English
Keywords:
Choquard type
,
variable-order fractional operator
,
mixed operator
,
variable singular exponent
,
discontinuous power nonlinearity
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Author Accepted Manuscript
Year:
2022
Number of pages:
Str. 2532-2553
Numbering:
Vol. 25, iss. 6
PID:
20.500.12556/RUL-143428
UDC:
517.956
ISSN on article:
1311-0454
DOI:
10.1007/s13540-022-00105-4
COBISS.SI-ID:
130585603
Publication date in RUL:
20.12.2022
Views:
608
Downloads:
65
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Fractional Calculus & Applied Analysis
Shortened title:
Fract. Calc. Appl. Anal.
Publisher:
De Gruyter, Bulgarian Academy of Sciences. Institute of Mathematics and Informatics
ISSN:
1311-0454
COBISS.SI-ID:
18093913
Projects
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0292
Name:
Topologija in njena uporaba
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-4031
Name:
Računalniška knjižnica za zavozlane strukture in aplikacije
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-4001
Name:
Izbrani problemi iz uporabne in računske topologije
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0278
Name:
Biološka koda vozlov - identifikacija vzorcev vozlanja v biomolekulah z uporabo umetne inteligence
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0114
Name:
Algebrajski odtisi geometrijskih značilnosti v homologiji
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0083
Name:
Forsing, fuzija in kombinatorika odprtih pokritij
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back