izpis_h1_title_alt

Kombinatorične igre in njihova uporaba pri pouku matematike : magistrsko delo
ID Jelenc, Katarina (Author), ID Kuzman, Boštjan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (8,44 MB)
MD5: 21EF27C0BBFC255D9C72BA5DC088F8EA

Abstract
Magistrsko delo obravnava osnove matematične teorije kombinatoričnih iger ter možnosti za uporabo takih iger pri pouku matematike v osnovni šoli. Prvi, teoretični del, predstavlja zaokrožen povzetek osnovne teorije z definicijami in izreki. V njem opredelimo osnovne pojme, kot so kombinatorična igra, drevo igre, strategija, pozicija, in jih ilustriramo s številnimi primeri. Nato dokažemo izrek Zermela o obstoju zmagovalne strategije za enega od igralcev ter izrek Sprague-Grundy o ekvivalenci med poljubno nepristransko igro normalnega tipa in igro NIM z eno kopico ustrezne velikosti. V drugem delu predstavimo 21 preprostih kombinatoričnih iger, ki bi jih lahko uporabili pri pouku matematike v osnovni šoli. Večina iger je izvirno delo, vsako predstavljeno igro pa spremlja razlaga zmagovalne strategije in vsebinska umestitev igre ob ustrezne matematične koncepte iz u nega na rta za osnovno šolo, kot so na primer števila, simetrija, delitelji, in podobno. Z občasno uporabo tovrstnih iger bi lahko popestrili običajen pouk matematike in pri učencih dodatno razvijali logi no sklepanje in analizo strategij.

Language:Slovenian
Keywords:Kombinatorične igre, igra normalnega tipa, pristranske in nepristranske igre, izrek Zermela, izrek Sprague-Grundy, razvijanje logičnega mišljenja
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Year:2022
Number of pages:XV, 75 str.
PID:20.500.12556/RUL-143265 This link opens in a new window
UDC:51(043.2)
COBISS.SI-ID:133277955 This link opens in a new window
Publication date in RUL:10.12.2022
Views:1293
Downloads:101
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Combinatorial games and their use in mathematical education
Abstract:
The Master's thesis deals with the basics of the mathematical theory of combinatorial games and the possibilities for using such games in mathematics lessons in primary school. The first, theoretical part, presents a rounded summary of the basic theory with definitions and theorems. In it, we define basic concepts such as combinatorial game, game tree, strategy, position, and illustrate them with many examples. Then we prove the Zermelo's theorem on the existence of a winning strategy for one of the players and the Sprague-Grundy theorem on the equivalence between an arbitrary unbiased game of normal type and a NIM game with one heap of appropriate size. In the second part, we present 21 simple combinatorial games that could be used in mathematics lessons in primary school. Most of the games are original work, and each featured game is accompanied by an explanation of the winning strategy and a content placement of the game alongside relevant math concepts from the primary school curriculum, such as numbers, symmetry, divisors, and the like. With the occasional use of these types of games, regular mathematics lessons could be enriched and students' logical reasoning and strategy analysis could be further developed.

Keywords:Combinatorial games, normal-play games, impartial and partizan games, Zermelo's theorem, the Sprague-Grungy's theorem, development of logical thinking

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back