izpis_h1_title_alt

Statistično preprečevanje z vidika korpusnega jezikoslovja
ID Polanič, Petra (Author), ID Lipovšek, Frančiška (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (512,74 KB)
MD5: ECA5962493C912BFAA4B852579CE057C

Abstract
Statistično preprečevanje je proces, ki govorcem omogoča upoštevanje arbitrarnih omejitev v jeziku, s čimer se izognejo smiselnim izjavam, katerih sprejemljivost je vprašljiva zaradi obstoja ustaljenih alternativnih formulacij, ki izražajo enako sporočilo v kontekstu. Proces temelji na indirektnih negativnih dokazih, kjer gre za sklepanje na osnovi odsotnosti, v tem primeru odsotnosti pričakovane formulacije, ko je namesto nje uporabljena alternativna. Negativni dokazi v jezikoslovju včasih veljajo za irelevantne; statistično preprečevanje na podlagi negativnih dokazov lahko sklepa zaradi svojega teoretičnega okvirja, konstrukcijske slovnice. Statistično preprečevanje je v magistrskem delu primerjano s konservativnostjo na osnovi zakoreninjenosti, kar omogoča vpogled v načine, kako različne razlage na osnovi negativnih dokazov obravnavajo vprašljive izjave. Obe razlagi upoštevata pogostost, statistično preprečevanje pa dodatno vpelje še idejo tekmovanja med konstrukcijami. Rojeni govorci v primerjavi z drugimi bolje koristijo proces statističnega preprečevanja. Magistrsko delo naslovi tudi predlog, da bi ob učenju jezika dokaze za statistično preprečevanje lahko našli v korpusih. Čeprav morda obstaja možnost upoštevanja negativnih dokazov v korpusih, to zahteva poglobljeno poznavanje jezikoslovja, ki presega raven povprečnega učenca jezika.

Language:Slovenian
Keywords:statistično preprečevanje, konstrukcijska slovnica, korpusno jezikoslovje, negativni dokazi
Work type:Master's thesis/paper
Organization:FF - Faculty of Arts
Year:2022
PID:20.500.12556/RUL-141785 This link opens in a new window
COBISS.SI-ID:125348611 This link opens in a new window
Publication date in RUL:08.10.2022
Views:1319
Downloads:63
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Statistical Preemption: A Corpus-Based Approach
Abstract:
Statistical preemption is a process through which speakers learn to observe arbitrary restriction in language, allowing them to avoid meaningful utterances judged as questionable due to the existence of an established alternative formulation used to express the same meaning-in-context. The process relies on indirect negative evidence ¬- that is, evidence based on absence, in this case the absence of an expected formulation when the alternative is produced instead. Negative evidence is sometimes considered irrelevant in linguistics; statistical preemption is able to utilise it due to the core assumptions of its specific theoretical framework, construction grammar. Statistical preemption is contrasted with conservatism via entrenchment to highlight how different negative evidence explanations approach questionable formulations; both consider frequency, but statistical preemption additionally focuses on the idea of competing constructions. Non-native speakers do not benefit from statistical preemption to the same extent as native speakers. The thesis addresses the suggestion that learners might find evidence for it in corpora, arguing that while it may be possible to consider negative evidence in corpora, this requires extensive knowledge of linguistics not available to the average language learner.

Keywords:statistical preemption, construction grammar, corpus linguistics, negative evidence

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back