izpis_h1_title_alt

Reprezentacije celih števil z vsotami kvadratov
ID Peteh, Rok (Author), ID Kuzman, Boštjan (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/7406/ This link opens in a new window

Abstract
V delu obravnavamo klasične probleme teorije števil o reprezentaciji celih števil z vsotami dveh, treh oziroma štirih kvadratov. Izrek o reprezentaciji praštevil z vsoto dveh kvadratov, ki ga predstavimo najprej, z uporabo raznovrstnih matematičnih tehnik dokažemo na 8 različnih načinov (z involucijami, s principom golobnjaka, s konveksnimi množicami, s particijami, z metodo neskončnega spusta, z Gaussovimi števili, z lastnostmi kongruenc in z geometrijskimi vzorci). Na dva različna načina nato dokažemo tudi izreka o reprezentaciji naravnih števil z vsoto dveh oziroma štirih kvadratov in omenimo nekaj zanimivih ugotovitev o številu takih reprezentacij. Nazadnje dokažemo še izrek o reprezentaciji z vsoto treh kvadratov, pri katerem uporabimo klasični Dirichletov pristop z uporabo kvadratnih form in lastnosti kvadratnih kongruenc. V zaključku razmišljamo o možnostih za obravnavo nekaterih opisanih problemov v obliki preiskovalnih aktivnosti v osnovni ali srednji šoli. V ta namen je narejen delovni list, s pomočjo katerega lahko učitelji izvedejo preiskovalno aktivnost pri pouku.

Language:Slovenian
Keywords:teorija števil
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Year:2022
PID:20.500.12556/RUL-141770 This link opens in a new window
COBISS.SI-ID:124713731 This link opens in a new window
Publication date in RUL:17.10.2022
Views:751
Downloads:149
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Representations of integers by sums of squares
Abstract:
The thesis discusses classical number theory problems on representations of integers by sums of two, three or four squares. The theorem on representation of prime numbers as sum of two squares, which is presented as first, is proven using different mathematical techniques in 8 different ways (using involutions, pigeon hole principle, convex subsets, integer partitions, method of infinite descent, Gaussian integers, congruences and geometric forms). Theorems on representations of natural numbers by sums of two or by four squares are also proven in two different ways and also some interesting results on the number of such representations are given. Finally, the theorem on representation of natural numbers by sums of three squares is proven using the classical aproach by Dirichlet with quadratic forms and properties of quadratic congruences. In the conclusion we discuss some possible approaches to communicate these problems in form of math investigations to students in primary or secondary schools. For this purpose we have created a worksheet, which teachers could use to implement such activity in their classroom.

Keywords:Number theory

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back