izpis_h1_title_alt

Bertrandova domneva : magistrsko delo
ID Blažič, Urša (Author), ID Vavpetič, Aleš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (646,25 KB)
MD5: AD200708493B65F8B4F2D4296CFAFCF0

Abstract
V magistrskem delu obravnavamo Bertrandovo domnevo, ki pravi, da za vsako naravno število $n$ obstaja vsaj eno praštevilo $p$, za katerega velja $n < p \leq 2n$. Podrobneje predstavimo nekaj najbolj znanih dokazov Bertrandove domneve - Erdősev, Ramanujanov in poenostavljen Ramanujanov dokaz. Erdősev dokaz temelji na oceni binomskega koeficienta, Ramanujanov dokaz pa izhaja iz prvega dokaza Bertrandove domneve, Čebiševega dokaza iz leta 1852. Poenostavljen Ramanujanov dokaz sta zapisala avtorja Meher in Ram Murty, ki sta domnevo dokazovala na enak način kot Ramanujan, le da sta se izognila uporabi Stirlingove formule. Opišemo tudi nekaj modifikacij Bertrandove domneve in njihovih uporab, med drugim Ramanujanova praštevila, ki jih Ramanujan uvede na koncu dokaza Bertrandove domneve.

Language:Slovenian
Keywords:Bertrandova domneva, praštevila, Ramanujanova praštevila, praštevilski izrek
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-141649 This link opens in a new window
COBISS.SI-ID:124214019 This link opens in a new window
Publication date in RUL:04.10.2022
Views:691
Downloads:103
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Bertrand's postulate
Abstract:
In the master's thesis, we study Bertrand's postulate, which states that for any given natural number $n$, there exists at least one prime number $p$ such that $n < p \leq 2n$. We present in more detail some of the most famous proofs of Bertrand's postulate - Erdős's, Ramanujan's and simplified Ramanujan's proof. Erdős's proof is based on estimation of the binomial coefficient. Ramanujan's proof derives from the first proof of Bertrand's postulate, Chebyshev's proof from 1852. Ramanujan's simplified proof was written by Meher and Ram Murty, who proved the postulate in the same way as Ramanujan, except they avoided using Stirling's formula in their proof. We also describe modifications of Bertrand's postulate and their applications, including Ramanujan's primes that Ramanujan introduces at the end of the proof of Bertrand's postulate.

Keywords:Bertrand's postulate, prime numbers, Ramanujan primes, Prime number theorem

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back