izpis_h1_title_alt

Zasnova časovno zveznega digitalnega oddajnika za bližnjo komunikacijo z oblikovanjem modulacijskih pulzov s faznim zamikom
ID KOROŠAK, ŽIGA (Author), ID Pleteršek, Anton (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (6,06 MB)
MD5: 8D6326915CD239AE92BBC42C01D8F58E

Abstract
V doktorskem delu predstavimo časovno zvezni digitalni oddajniški sistem izpraševalnika za oddajo signalov visokofrekvenčne (HF) radiofrekvenčne identifikacije (RFID). Oddajniški sistem je zasnovan skladno z najnovejšo verzijo specifikacij NFC Forum Analog Technical Specification [1] in EMVCo EMV Level 1 Specifications for Payment Systems Contactless Interface Specification [2]. Poleg tega smo pri načrtovanju upoštevali zahteve, ki so prisotne v standardu ISO 14443 [3], vendar trenutno še niso prisotne v zgoraj omenjenih specifikacijah. Namen doktorskega dela je bilo pregledati strokovno literaturo in poiskati sodobne rešitve, ki so uporabljene tudi na gigaherčnem področju in so primerne za adaptacijo na tehnologije HF RFID. Časovno zvezno digitalno tehnologijo smo identificirali kot obetavno za zadostitev zahtev za porabo energije oz. učinkovitost oddajnika, za učinkovito porabo površine na siliciju in za implementacijo dodatnih funkcionalnosti, ki so potrebne za zadostitev specifikacijam. V delu opišemo koncept izdelanega oddajnika, ga primerjamo z alternativnimi rešitvami in poudarimo prednosti izdelanega koncepta. Izvedemo tudi meritve, s katerimi prikažemo, da je izdelani koncept kompatibilen z verzijo specifikacije NFC Forum Analog Technical Specification 2.1 in da presega zahteve specifikacije. Prva motivacija za to delo je bila izdaja specifikacije NFC Forum Analog Technical Specification 2.1, ki je zaostrila zahteve glede na prejšnje specifikacije. Druga motivacija je bilo izboljšanje kompatibilnosti NFC izpraševalnikov z različnimi antenami. V uvodu opišemo rešitve za oddajnike na področju HF RFID in drugih protokolov, ki za komunikacijo uporabljajo frekvence na gigaherčnem področju. Pri tem se osredotočimo na opis osnovnih konceptov digitalnih oddajnikov, ki jih bralec potrebuje za razumevanje tega dela. Nato se osredotočimo na motivacijo in cilje, kjer opišemo problematiko povečanja zahtev za oddajnik zaradi uporabe vedno manjših anten in prednosti digitalnih tehnologij pred analognimi. V drugem poglavju najprej predstavimo oddajo z zamikanjem faze in nato naredimo pregled literature digitalnih oddajnikov na splošno in oddajnikov za HF RFID. Na področju digitalnih oddajnikov predstavimo dela, ki smo jih izbrali kot podlago za načrtovanje našega koncepta. Nato predstavimo relevantna dela na področju oddajnikov za HF RFID. Pri tem ugotovimo, da je na področju načrtovanja oddajnikov za NFC izpraševalnike izrazito pomanjkanje del glede na druga področja HF RFID in RFID na splošno. Na predstavljenih delih identificiramo pomanjkljivosti in potencialne izboljšave, ki jih uporabimo kasneje za primerjavo naše rešitve z nadgrajenima verzijama enega od predstavljenih del. V tretjem poglavju podrobno predstavimo koncept oddajnika. Najprej predstavimo oddajno-sprejemniški sistem NFC izpraševalnika, pri čemer se posebej osredotočimo na šum oddajnika. Nato predstavimo novi oddajnik na osnovi časovno zvezne digitalne tehnologije. Sestavljata ga digitalni del z vpoglednimi tabelami in interpolatorjem ter analogni del, ki vsebuje fazni modulator, regulator za napajanje ojačevalnika in ojačevalnik razreda D. Fazni modulator je v osnovi digitalno-časovni pretvornik, ki omogoča dovolj hitro spreminjanje izhodne faze za oddajo na protokolih bližnje komunikacije. Za zagotovitev natančnih faz v digitalno-časovnem pretvorniku bazira le-ta na zaklenjeni zamični zanki, ki avtomatsko odpravlja procesne, temperaturne in napetostne variacije. Ker fazni modulator v oddajno pot dodaja šum, smo implementirali obvodno pot za nosilec, na kateri je minimalno število elementov, kar zagotovi minimalni šum med sprejemom. Da je faza ure na obvodni poti sinhronizirana z izhodno fazo modulatorja v nemoduliranem stanju, smo implementirali tudi fazni sinhronizator, ki poleg sinhronizacije faze med dvema potema popravlja tudi delovni cikel vhodne ure. To popravljanje je potrebno zaradi invertirajoče narave zamičnih celic v modulatorju, ki so občutljive na delovni cikel ure. V četrtem poglavju najprej predstavimo kriterije za vrednotenje oddajnika v bližnji komunikaciji. Nato prikažemo delovanje implementiranega sistema in predstavimo metodo za vrednotenje delovanja sistema v simulaciji, katere osnova so relevantne specifikacije. Potem predstavimo simulacijske rezultate, pridobljene z opisano metodo. Za primerjavo delovanja nato predstavimo dve možni nadgradnji ene izmed rešitev za oddajnik, ki se nahaja v literaturi, in jih vrednotimo z enako metodologijo kot implementirani sistem. Rezultate nato primerjamo in ugotovimo, da ima implementirani sistem prednost pred alternativnima rešitvama ne samo v lastnostih, ampak tudi v manjši porabi silicija, porabi energije in v boljšem prilagajanju na manjše, submikronske procesne tehnologije. V petem poglavju najprej predstavimo merilno postavitev, ki smo jo uporabili za vrednotenje testenega čipa z implementiranim sistemom. Najprej izvedemo meritev v enakih pogojih kot smo jih uporabili v simulacijah in primerjamo pridobljene merilne rezultate s simulacijskimi rezultati. Ugotovimo, da je ujemanje med temi rezultati dobro. Nato izvedemo meritve po zahtevah merilnih specifikacij NFC Forum Analog Technical Specification 2.1 in NFC Forum Test Cases for Analog 2.1 [4]. Ugotovimo, da izmerjeni rezultati presegajo zahteve specifikacije. Nazadnje izmerimo še fazni šum oddajnika in skupni šum v sistemu, iz katerega izluščimo šum oddajnika. Šum na novo implementiranega oddajnika primerjamo s šumom oddajnika prejšnje generacije, ki je bil procesiran na istem testenem čipu. Ugotovimo, da sistem za preklapljanje med modulatorjem in sinhronizirano obvodno uro v sprejeti šum ne dodaja šuma modulatorja, kajti v fazi sprejema je nizek šum kritičen za zanesljivo delovanje sprejemnika.

Language:Slovenian
Keywords:digitalni oddajnik, digitalno-časovni pretvornik, fazni modulator, zamikanje faze, NFC, RFID, oddajnik.
Work type:Doctoral dissertation
Organization:FE - Faculty of Electrical Engineering
Year:2022
PID:20.500.12556/RUL-141625 This link opens in a new window
COBISS.SI-ID:125600003 This link opens in a new window
Publication date in RUL:03.10.2022
Views:390
Downloads:73
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Design of Continuous-Time-Digital Outphasing Transmitter For Near Field Communication Modulation Pulse Shaping
Abstract:
In this work we present a continuous-time digital transmitter for high-frequency (HF) radiofrequency identification (RFID) reader. The transmitter is designed to be compatible with the latest version of the NFC Forum Analog Technical Specification [1] and EMVCo EMV Level 1 Specifications for Payment Systems Contactless Interface Specification [2]. During the research and design phase, we also aimed to be compatible with requirements presented in the standard ISO 14443, but which have not been added yet to previously mentioned specifications. In doctoral thesis we firstly aimed to study scientific literature on the topic and to find modern solutions that are suitable for adaptation to HF RFID technologies, as there was a lack of relevant literature in the NFC RFID field. We identified continuous-time digital technology as promising for reaching our goals for transmitter power efficiency, efficient use of silicon area, and for implementing the functionalities that are required to achieve compatibility with relevant specifications. We described the concept of a continuous-time digital technology transmitter, compared it to alternative solutions that we also identified in the literature, and then highlighted the advantages of our implemented concept. The performance measured showed that our solution is compatible with NFC Forum Analog Technical Specification 2.1 with a good margin on the limits set in the specification. Our main motivation for this work were the requirements, published by NFC Forum Analog Technical Specification 2.1, which, compared to previous versions of the specification, tightened requirements for the transmitter. Yet another motivation was to improve the compatibility between NFC readers and different antennas. In the introduction we present the basic concepts of the HF RFID and digital transmitters that are required to understand this work. We then focus on the goals and motivation of this work, where we describe the challenge of increasing requirements for transmitters due to the use of ever-smaller antennas and the advantage of digital technologies over their analog counterparts. In the second chapter we give an overview of the outphasing operation and the relevant scientific literature in the field of digital transmitters in general and in the field of HF RFID transmitters. We present best works in the field of digital transmitters that we selected as the basis for our design. Then we present relevant works in the field of HF RFID transmitters. We note that there are very few NFC reader transmitters presented in the literature, especially compared to the amount of other literature in HF RFID and RFID in general. In the presented works, we identify the weaknesses and potential improvements, which we also incorporate into our design and use later to compare to our work. The third chapter presents our concept for the transmitter in detail. First, we focus on presenting the structure of the transmitter and receiver in the NFC readers, where we mainly focus on the transmitter noise. Then we present the structure of our transmitter built on the basis of continuous-time digital technology. The new transmitter is composed of a digital processing unit that contains lookup tables and an interpolator as well as of an analog part that contains a phase modulator, a regulator which provides power to the D-class amplifier, and the amplifier itself. The phase modulator is a digital-to-time converter, which is designed to maximize the phase slew rate for NFC. To ensure precise phases in the digital-to-time converter, a delay-locked loop is implemented, which automatically removes the effect of any process, supply, and temperature variation. Because the phase modulator also adds some noise into the transmission path, we implemented a bypass path for the carrier signal, which contains a minimal number of elements to ensure minimum noise during reception. To ensure phase synchronization between the two paths we implemented a phase synchronizer, which, in addition to synchronizing the delay between the two paths, also corrects the modulator input clock duty cycle. This is mandatory due to the use of inverting delay cells in the modulator, which are sensitive to the input clock duty cycle. In the fourth chapter, we first present the criteria for evaluating the performance of a transmitter in NFC. Then we show the operation of our implemented system and a method to evaluate the performance in simulation, based on criteria defined in specifications. We present the results obtained with the aforementioned method. To compare the results we present two possible alternative solutions based on our suggestion on how to upgrade one of the works in the literature. We evaluate both alternative solutions using the same method as our system and find that our system is superior not only in terms of performance, but also exhibits lower required silicon area, lower power consumption and better scalability with smaller process technologies. The measurement setup is given in the fifth chapter. It is used to evaluate the performance of our solution implemented on a test chip. First, we perform a set of measurements using the same conditions as were used in the simulation environment and we compare the measurement results with the simulation results. We find a good correlation between the results. Then we perform a set of measurements according to NFC Forum Analog Technical Specification 2.1 and NFC Forum Test Cases for Analog 2.1 [4]. We find that the measured results exceed the minimum requirements set in the specification. Finally, we measure the phase noise of the transmitter and the total noise of the receiver, from which we calculate the transmitter noise power. We compare the noise of the newly implemented transmitter to the noise of the previous generation transmitter, which is also implemented alongside our new transmitter on the test chip. We find that the system for bypassing the modulator prevented its noise from coming into the received signal during reception, when low noise is most critical.

Keywords:digital transmitter, digital-to-time converter, phase modulator, outphasing, NFC, RFID, transmitter

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back