Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Core/shell structures for Li-ion capacitors
ID
Abbasi, Rabail Badar
(
Author
),
ID
Dominko, Robert
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(2,34 MB)
MD5: 220CD576EB97086AB91BA21D7133E82F
Image galllery
Abstract
Lithium ion capacitor (LIC) is an interesting category of energy storage systems, which combines an electrode from a lithium ion battery (LIB) and an electrode from an electrical double layer capacitor (EDLC). The resulting hybrid energy device exhibits rapid charge/discharge capability, long cycle life and high energy density. The widescale usage of LICs is limited however, due to the inherent low concentration of Li-ions present within it. As such, prelithiation technologies have been developed and implemented with varying levels of success. However, all approaches involve an additional measure to be undertaken, which introduces its own challenges. The most optimal solution is to remove the need for prelithiation completely. In this thesis, we propose a method of eliminating the requirement of prelithation by designing a core-shell structure for the anodic active material, with the shell being the material responsible for electrochemical activity, and the core facilitating electronic conductivity. Amorphous titanium dioxide (α-TiO2), a well-researched anode material, is used as the shell, while copper (Cu), a highly conductive metal, is used as a core; Cu@TiO2. Three wet chemistry-based approaches are undertaken to synthesize the anodic material. The best performing anodic material exhibited a specific capacity of ~ 151 mAh g-1, measured in a half cell against Li foil. The anode was then tested in a LIC against cathode with activated carbon as the active material. The resulting LIC showed high specific capacity and stable cycling behaviour up to 1000 cycles at 2.5 A g-1, with a coulombic efficiency of ~ 98.8%. Rate capability tests also showed relatively high stability of the anode material at low to high current rates. The results of this thesis open up potential avenues for further research focused on designing anode structures for LICs.
Language:
English
Keywords:
Lithium-ion capacitor
,
Core-shell structure
,
Amorphous titanium dioxide
,
Copper
,
Activated carbon
,
Lithium-ion battery anode
,
Prelithiation
Work type:
Master's thesis/paper
Organization:
FKKT - Faculty of Chemistry and Chemical Technology
Year:
2022
PID:
20.500.12556/RUL-141441
Publication date in RUL:
29.09.2022
Views:
8701
Downloads:
92
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ABBASI, Rabail Badar, 2022,
Core/shell structures for Li-ion capacitors
[online]. Master’s thesis. [Accessed 13 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=141441
Copy citation
Share:
Secondary language
Language:
Slovenian
Title:
Core/shell structures for Li-ion capacitors
Abstract:
Litij-ionski kondenzator (LIC) je zanimiva kategorija sistemov za shranjevanje energije, ki združuje elektrodo iz litij-ionske baterije (LIB) in elektrodo iz električnega dvoplastnega kondenzatorja (EDLC). Nastala hibridna energetska naprava ima sposobnost hitrega polnjenja/praznjenja, dolgo življenjsko dobo in visoko energijsko gostoto. Vendar pa je široka uporaba LIC omejena zaradi inherentne nizke koncentracije Li-ionov, ki so prisotni v njih. Kot take so bile razvite in implementirane tehnologije prelitiacije z različnimi stopnjami uspeha. Vendar pa vsi pristopi vključujejo dodatne ukrepe, ki jih je treba izvesti, kar predstavlja svoje izzive. Najbolj optimalna rešitev je popolna odprava potrebe po prelitiaciji. V tem diplomskem delu predlagamo metodo za odpravo zahteve po predlitaciji z oblikovanjem strukture jedro-lupina za anodno aktivni material, pri čemer je lupina material, odgovoren za elektrokemično aktivnost, jedro pa omogoča elektronsko prevodnost. Kot ovoj je uporabljen amorfni titanov dioksid (α-TiO2), dobro raziskan anodni material, medtem ko je baker (Cu), zelo prevodna kovina, uporabljen kot jedro; Cu@TiO2. Za sintezo anodnega materiala so uporabljeni trije pristopi, ki temeljijo na mokri kemiji. Najbolj zmogljiv anodni material je pokazal specifično kapaciteto ~ 151 mAh g-1, merjeno v polovični celici proti Li foliji. Anoda je bila nato testirana v LIC proti katodi z aktivnim ogljem kot aktivnim materialom. Nastali LIC je pokazal visoko specifično zmogljivost in stabilno ciklično obnašanje do 1000 ciklov pri 2,5 A g-1, s kulonsko učinkovitostjo ~ 98,8 %. Preskusi zmogljivosti hitrosti so pokazali tudi razmeroma visoko stabilnost anodnega materiala pri nizkih do visokih stopnjah toka. Rezultati te diplomske naloge odpirajo potencialne poti za nadaljnje raziskave, osredotočene na oblikovanje anodnih struktur za LIC.
Keywords:
Litij-ionski kondenzator
,
struktura jedra in lupine
,
amorfni titanov dioksid
,
baker
,
aktivno oglje
,
anoda litij-ionske baterije
,
prelitiranje
Similar documents
Similar works from RUL:
Photocatalytic properties of transparent thin films of $TiO_2$ doped with vanadium in a silica binder
Meritev debelin ultra-tankih plasti z metodo rentgenske fotoelektronske spektroskopije
STM mikroskopija tankih plasti superprevodnika na kovini
Optimization of the preparation and structural properties of doped nanosized titanium dioxide
Nanostructured $TiO_2$ Thin Films for Electrochemical Water Splitting
Similar works from other Slovenian collections:
Vpliv urejenosti strukture SiO[spodaj]2 na fotokatalitsko aktovnost SiO[spodaj]2/TiO[spodaj]2 tankih plasti
Nanašanje tankih plasti po metodi curka ioniziranih skupkov, CIS
Self-cleaning and anti-fogging surfaces based on nanostructured metal oxides
Zr/Cu-TiO[sub]2 catalysts for photocatalytic water treatment
Solution-derived photocatalytic films for environmental cleaning applications
Back