izpis_h1_title_alt

Hibridni model za napoved dinamičnega posedanja površine nad podzemnim odkopom : doktorska disertacija
ID Pal, Andrej (Author), ID Rošer, Janez (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (29,79 MB)
MD5: 15C71617C29DD2DB73B4DA6A1E917E3E

Abstract
Učinki podzemnega rudarjenja se odražajo na površini v obliki posedanja terena, kar povzroča poškodbe infrastrukture znotraj in v širšem območju rudarskega prostora. V zadnjih desetletjih je zavedanje pomembnosti varovanja življenjskega okolja in posledično tudi površinskih objektov privedlo do razvoja različnih modelnih pristopov za napoved posedanja površine nad podzemnimi odkopi. Ti se razlikujejo glede na metode rudarjenja in naravnih značilnosti območja posameznih nahajališč mineralnih surovin. Raziskave v doktorski disertaciji smo razdelili v tri sklope, kjer smo si za cilj postavili razvoj hibridnega napovednega modela, ki združuje več preizkušenih rešitev in omogoča napoved posedanja za katero koli površinsko točko. V okviru predhodnih raziskav smo v prvem sklopu proučili pogoste metode spremljanja posedkov površine. Na podlagi praktičnosti in natančnosti smo za izvedbo monitoringa posedkov izbrali metodo fotogrametrije UAV. V drugem sklopu smo naredili analizo razvoja posedanja točke in med sabo primerjali različne napovedne modele. Glede na dobljene rezultate smo za napoved posedanja točke kot najprimernejši model izbrali modificirano sigmoidno funkcijo, s katero smo v zahtevanih mejah natančnosti interpolirali in ekstrapolirali izmerjene posedke. Omenjena napoved posedkov temelji na oceni trenda posedkov in napovedi časa naslednje ter končne meritve, ko se začne konsolidacija in je nadaljnje posedanje zanemarljivo. V tretjem sklopu smo pojasnili teorijo hibridnega modela za napoved dinamičnega ugrezanja z razdelitvijo vplivnega območja na pravokotne sektorje, pri čemer je vsak sektor vseboval oblak točk in ravnino, ki se najbolje prilega tem točkam. Tako je mogoče napoved posedkov implementirati v režim monitoringa posedkov. Vsako ravnino smo definirali s centroidom, katerih višine smo uporabili, kot vhodni podatek za izračun parametrov modificirane sigmoidne funkcije. Razvit hibridni model, ki vključuje sigmoidno funkcijo, računsko mrežo s sektorji in primerjavo oblakov točk, lahko uporabimo za optimizacijo sanacije površine nad podzemnim odkopom. To dosežemo s pravočasnim odkrivanjem območij intenzivnega posedanja in kategorizacijo sektorjev računske mreže. Hibridni model smo uspešno verificirali na dejanskih podatkih posedanja površine v najbolj aktivnem odkopnem območju Premogovnika Velenje. Predlagana metoda je dobra osnova za napoved posedanja površine, kjer konvencionalen monitoring ni mogoč, ter omogoča prilagoditev nadaljnjih meritev posedkov glede na predvideno dinamiko posedanja terena, kar je časovno in stroškovno učinkovito.

Language:Slovenian
Keywords:posedanje površine, monitoring, podzemni odkop, napovedni model posedanja, modificirana sigmoidna funkcija, hibridni model
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:NTF - Faculty of Natural Sciences and Engineering
Place of publishing:Ljubljana
Publisher:[A. Pal]
Year:2022
Number of pages:XVIII, 118 f.
PID:20.500.12556/RUL-141193 This link opens in a new window
UDC:622
COBISS.SI-ID:126636035 This link opens in a new window
Publication date in RUL:24.09.2022
Views:1551
Downloads:139
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Hybrid prediction model of surface dynamics subsidence above underground excavation : Ph. D. thesis
Abstract:
The effects of underground mining are reflected on the surface in the form of ground subsidence, which causes damage to infrastructure in the wider mining area. In recent decades, awareness of the importance of protecting the environment, and thus surface structures, has led to the development of various modeling approaches for predicting surface subsidence over underground mining excavations. These differ depending on the mining methods and the natural conditions in the area of each mineral deposit. The dissertation research was divided into three sections, and our goal was to develop a hybrid prediction model that combines several tested solutions and allows prediction of subsidence for any surface point. As part of the preliminary research, we examined common methods for monitoring surface subsidence in the first section. For reasons of practicality and accuracy, we chose the UAV photogrammetry method for monitoring ground subsidence. In the second part, we analyzed the development of the subsidence of a point and compared different prediction models. Based on the obtained results, we selected the modified sigmoid function as the most suitable model for point subsidence prognosis, which we used to interpolate and extrapolate the measured subsidence values within the required accuracy limits. The mentioned subsidence prediction is based on the assessment of the subsidence trend and the prediction of the time of the next and final measurement, when the consolidation starts and further subsidence is negligible. In the third part, the theory of the hybrid model for dynamic subsidence prediction was explained, in which the area of influence is divided into rectangular sectors, each sector containing a cloud of points and a plane that best fits these points. In this way, it is possible to implement subsidence prediction in the monitoring regime. Each plane was defined by a centroid whose heights were used as input data for calculating the parameters of the modified sigmoid function. The developed hybrid model, which includes a sigmoid function, a computational grid with sectors, and a point cloud comparison, can be used to optimize surface remediation over an underground excavation. This is achieved by identifying areas of intense subsidence and categorizing sectors of the computational grid. The hybrid model was successfully verified on actual surface subsidence data in the most active mining area of the Velenje Coal Mine (slo. Premogovnik Velenje). The proposed method is a good basis for prediction of surface subsidence in areas where conventional monitoring is not possible, and enables time- and cost-efficient adjustment of further subsidence measurements based on the predicted dynamics of terrain subsidence.

Keywords:surface subsidence, monitoring, underground excavation, subsidence prediction model, modified sigmoid function, hybrid model

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back